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SUMMARY

The composition of an ecosystem is thought to be
important for determining its resistance to invasion.
Studies of natural ecosystems, from plant tomicrobi-
al communities, have found that more diverse com-
munities are more resistant to invasion. In some
cases, more diverse communities resist invasion by
more completely consuming the resources neces-
sary for the invader. We show that Escherichia
coli can successfully invade cultures of the algaChla-
mydomonas reinhardtii (phototroph) or the ciliate
Tetrahymena thermophila (predator) but cannot
invade a community where both are present. The in-
vasion resistance of the algae-ciliate community
arises from a higher-order interaction between spe-
cies (interaction modification) that is unrelated to
resource consumption. We show that the mode of
this interaction is the algal inhibition of bacterial ag-
gregation, which leaves bacteria vulnerable to preda-
tion. Thismode requires both the algae and the ciliate
to be present and provides an example of invasion
resistance through an interaction modification.

INTRODUCTION

Microbial communities inhabit nearly every niche on Earth, from

soils and oceans to plant and animal hosts. Rapid dispersal of

microbes from one environmental context to another (Bovallius

et al., 1978; Stocker et al., 2008) means that these communities

are constantly confronted with invaders. Therefore, understand-

ing the mechanisms of invasion resistance in microbial commu-

nities is central to understanding the structure of those commu-

nities in nature. Moreover, a fundamental understanding of

microbial community invasion dynamics is necessary for suc-

cessfully designing industrial processes such as algal biofuel

production (Letcher et al., 2013) or controlling harmful invasions

in nature such as blooms (Chambouvet et al., 2008).

Our current understanding of when and why some invasions

succeed and others fail is grounded in the idea that an invader

must either outcompete an existing community member for an

available resource (dominance) or consume a resource that is

not already being consumed by the community (complemen-

tarity) (Elton, 1958). Dominance and complementarity have suc-

cessfully explained the outcome of invasions in a wide range of

studies. For example, in laboratory populations of Pseudomonas

fluorescens, more diverse communities resisted invasion more

effectively by more completely occupying the available niches

(Hodgson et al., 2002). Qualitatively similar results were

observed for E. coli invasions of soil communities (van Elsas

et al., 2012), wherein diversity of, and resource consumption

by, the community were positively correlated with invasion resis-

tance. Similarly, studies of plant root bacterial communities

demonstrated that community resource competition networks

could reliably predict the outcome of invasions both in vitro

and in tomato plant root communities (Wei et al., 2015). Similar

results have been found for plant communities on a larger spatial

scale (Tilman, 1997).

Recently, theoretical work using consumer-resource models

has extended this intuition and suggested that the emergent

resource consumption and exchange in cross-feeding commu-

nities can be understood as a community-level fitness, which

provides cohesiveness and therefore invasion resistance (Tikho-

nov, 2016). Experimental efforts suggest that this picture can

capture some features of experimental invasions in bacterial

communities (Lu et al., 2019). Collectively, this work shows

that substantial insight into invasion dynamics can come from

understanding resource dynamics during an invasion process.

However, in nearly all microbial communities, interactions

exist that are not directlymediated by resources: for example, in-

teractions mediated by the secretion of antibiotics (Vetsigian

et al., 2011) or predation by protists (Jost et al., 1973) or phage

(Rodriguez-Brito et al., 2010). Some studies have been under-

taken to examine the role these types of interactions play in

determining the fate of invading species (Ravva et al., 2013);

however, as recently pointed out by Mallon et al. (2015), it re-

mains an outstanding question how interactions that are not

mediated by resources, such as predation, affect community

invasion dynamics.

Here, we use a model microbial community to study invasion

dynamics in the presence of predation. Microbial communities

in freshwater lakes and nearby saturated soils are occupied

by primary producers who fix inorganic carbon, metabolically
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flexible heterotrophic bacteria who decompose organic matter,

and predators who unlock nutrients held in biomass (Kirchman,

2012). To study this canonical natural community, we use a

three-species model microbial ecosystem comprising the alga

Chlamydomonas reinhardtii, which acts as a primary producer

and is an endemic phototroph in soils and freshwater (Sack

et al., 1994), the bacterium Escherichia coli, which acts as a

decomposer and is common in soils (Ishii et al., 2006), and the

ciliate Tetrahymena thermophila, which dwells in freshwater

and preys on E. coli. We refer to this model ecosystem as the

‘‘ABC’’ community for algae, bacteria, and ciliates. The ABC

community has been studied previously as a model self-sustain-

ing closed microbial ecosystem (Frentz et al., 2015; Hekstra and

Leibler, 2012; Kawabata et al., 1995). Recent work has shown

that long-term abundance dynamics in closed ABC ecosystems

are complex and deterministic on timescales of months, exhibit-

ing rich spatiotemporal and phenotypic dynamics (Frentz et al.,

2015). The fact that the composition of the ABC community re-

flects the structure of some natural communities and that quan-

titative measurements are feasiblemake this a compellingmodel

ecosystem for quantitative ecology (Widder et al., 2016).

Here, we show that when E. coli (B) is introduced into commu-

nities of C. reinhardtii (A) and T. thermophila (C), A modifies the

interaction between B and C, resulting in failed invasions (see

Box 1). When B invades C alone, B aggregates to avoid preda-

tion by C and successfully grows to a high density. Similarly,

when B invades A alone, A may stall the invasion of B, but B

can still successfully invade and grow to a high density. In

contrast, when B is introduced into a community of C and

high-density A (> 5 3 104mL�1), B always fails to invade. We

demonstrate that nutrient competition is not responsible for the

invasion dynamics we observe. Instead, we find that A inhibits

aggregation of B, resulting in increased predation pressure on

B by C and therefore a decline in B abundances. We construct

a simplemodel of the population dynamics in this microbial com-

munity that faithfully recapitulates the invasion of B in commu-

nities of A and/or C. We then use the model to predict the abun-

dance dynamics of all three species as a function of light level

where we find higher light levels result in lower B abundances

because of increased A densities. We confirm this prediction

experimentally.

Our study provides a clear example of interaction modification

(Billick andCase, 1994;Wootton, 1994), whereby one species (A)

modifies the interaction between two other species (B and C). In

ecology, interaction modifications are often termed ‘‘higher-or-

der interactions’’ because describing them mathematically by

modeling the impact of each species’ abundance on those of

other species (e.g., a Lotka-Volterra formalism) requires a term

that is the product of all three species abundances (Billick and

Case, 1994). We show that describing the abundance dynamics

in our community using a Lotka-Volterra formalism indeed re-

quires such a higher-order term. As a result, we refer to interac-

tion modification as a ‘‘higher-order interaction.’’ We go on to

show that a higher-order term (product of three species’ abun-

dances) is not necessary when we explicitly model the aggrega-

tion of the bacteria (Box 1). Therefore, the higher-order interac-

tion we observe is fundamentally distinct from higher-

order effects in physical systems that cannot be decomposed

into pairwise terms irrespective of the level of description. Quite

to the contrary, our results show that higher-order interactions in

ecosystems can be accounted for quantitatively with pairwise

terms when the mathematical description of the system includes

the necessary microscopic details.

RESULTS

We study the dynamics of the ABC community in batch culture

conditions with the community open to gas exchange. Organ-

isms are introduced at low initial densities into 30 mL of a fresh-

water mimic medium (Taub and Dollar, 1968) with undefined

carbon and nitrogen sources (proteose peptone no. 3, see

STAR Methods). To initiate an experiment, all three organisms

are cultured axenically in their respective growth media. Cells

are washed and then their densities are determined by flow

cytometry. The communities are then constructed with known

initial starting densities and maintained in custom culture

devices, which control temperature via feedback to a Peltier

element (30+C) and illumination via a light-emitting diode (LED)

below the vial (Figure 1A).

Here, we present two types of experiments: coculture experi-

ments and invasion experiments. Coculture refers to experi-

ments in which all species are simultaneously introduced

at low densities (5 3 102 mL�1 for A, 1 3 103 mL�1 for B, and

53 102 mL�1 for C) and in all possible monoculture, pair-culture,

and tri-culture combinations. Initial densities were chosen to be

low enough to require substantial growth of each species during

the experiment but high enough to limit stochastic effects due to

counting noise. A and C were started at lower densities than B

because of their lower carrying capacities in these growth condi-

tions. Invasion refers to experiments in which A and/or C is intro-

duced at low density, allowed to grow for a fixed period of time

(4 or 14 days), and then inoculated with B. In all experiments,

abundance dynamics are followed approximately daily by sam-

pling 500 mL of the community and performing flow cytometry

measurements. Flow cytometry permits the quantification of

abundances for A, B, and C by chlorophyll fluorescence, genet-

ically encoded yellow fluorescent protein (YFP) fluorescence,

and size, respectively (see STAR Methods). We performed a

live-dead staining experiment to check that the cells counted

with flow cytometry are alive (Figure S11). Because a significant

number of B cells are present in aggregates, we developed an

algorithm to estimate the number of cells in aggregates from

the bacterial side-scatter signal. Previous studies have used

side scatter as a proxy for aggregation as well (Hom andMurray,

2014). However, we note that the central findings of this study,

where A modifies the interaction between B and C causing B in-

vasions to fail in the presence of A and C (Figures 2 and 6), do not

depend on correcting the bacterial counts for cells in aggregates

(Figures S2 and S3).

We varied A’s growth rate by performing experiments at

two light levels: ‘‘low light’’ (average intensity of 1,600

Lux z 23 mmol m�2 s�1) or ‘‘high light’’ (average intensity of

4,200 Lux z 60 mmol m�2 s�1). The spectrum of the LEDs

used here is shown in Figure S7. These light levels were cho-

sen to assay the impact of changes in algal abundance dy-

namics on the community and resulted in approximately a

factor two change in algal growth rates (Table S1). Light levels

do not appear to impact the abundance dynamics of B or C
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Box 1. Defining Higher-Order Interactions in the Context of a Mathematical Model of Algae-Bacteria-Ciliate Invasion Dynamics

To interrogate the nature of higher-order effects in the ABC community, we sought tomodel the invasion dynamicswe observed.

We first asked whether a model that describes abundance dynamics through effective interactions using a Lotka-Volterra

formalism, but lacks mechanistic details of the interactions, is sufficient to explain our observations. We then interrogated a

more detailed mechanistic model of the abundance dynamics. We found that the higher-order interaction manifests as a term

that is the product of all three species abundances when mechanistic details of the interactions in the community are neglected.

In contrast, amodel incorporating the bacterial aggregation-deaggregation process contains no term that is the product of all three

species abundances. Therefore, a model that includes mechanistic details accounts for the ‘‘higher-order interaction’’ without

requiring a term that is the product of three species abundances.

We first sought a mathematical description of the invasion dynamics shown in Figure 2 using a Lotka-Volterra formalism, which

captured the impact of the abundance of each species on the abundances of all other species. Theoretical studies of higher-order

interactions in a Lotka-Volterra formalism include terms that are the product of more than two species’ abundances (Bairey et al.,

2016; Grilli et al., 2017). In fact, Billick and Case (1994) have proven that for any three species ecosystem exhibiting interaction

modification, a model at the level of abundances of each species must include a higher-order term that is the product of three spe-

cies’ abundances (Billick andCase, 1994). As a result, the terms ‘‘higher-order interaction’’ and ‘‘interactionmodification’’ are used

interchangeably in the ecology literature.

To sharpen the theoretical claims from these studies, we asked whether the invasion dynamics in Figure 2 could be described

using a Lotka-Volterra formalism at the level of abundances.We formulated a deterministic model describing the abundances of all

three species that neglected both aggregation and substrates but instead only described abundance dynamics of each species. In

this formalism, numerical simulations show that the following model qualitatively captures the invasion dynamics we observe

experimentally (Figure S13).

_xB =

�
rBxB � rAB

xAxB
KA

� rABC
xAxCxB
KAC

� �
1� xB + bxC

KB

�
: (Equation 1)

_xA = rAxA

�
1� xA

KA

�
: (Equation 2)

_xC = rCxC

�
1� xC

KC

�
: (Equation 3)

Here, a dot denotes a derivative with respect to time, and xi is the abundance of species i. ri is the growth rate of species i, rAB and

rABC are interaction coefficients, andK* are carrying capacities. Details of themodel specification and parameters used are given in

the STAR Methods and below. Briefly, the term rBxB describes bacterial growth and the term rABxBxA the inhibition of bacterial

growth by algae. The higher-order term (rABCxAxCxB) captures the interaction modification, and the term in the last set of paren-

thesis captures predation by C on B characterized by the constant b. The dynamics of xA and xC are modeled as logistic growth.

For xA in low light, we use lower growth rates (rA) when xB or xC are present in the community (Table S1). The model neglects the

decline in ciliate abundances towards the end of the experiment. We make this assumption because we find that ciliate dynamics

are more sensitive to the culture from which the cells came than the light level or presence of A or B (Figure S6).

The model shown in Equations 1, 2, and 3 abstracts away mechanistic details of predation, aggregation, and nutrient consump-

tion. As required by Billick andCase (1994), themodel includes a term that is the product xAxCxB. It is intuitive that this should be the

case because any modification of the predation of B by C due to A cannot be accounted for by the simple predation term (xBxC)

because such a term will exhibit no dependence on algal abundances.

Given the apparent importance of bacterial aggregation to the abundance dynamics we observe, we next asked whether a

model that included aggregation could also capture the invasion dynamics in Figure 2. In this framework, we describe the abun-

dance dynamics of the algae and ciliates, non-aggregated bacteria (xB) as well as aggregated bacteria (AB), and a single substrate

consumed by xB, which we denote S. The model takes the form:

_xB = xB

�
rB � rAB

xA
KA

�
S� FxBxC � a1xBxC +a2ABxA: (Equation 4)

_AB = a1xBxC � a2ABxA: (Equation 5)

_xA = rAxA

�
1� xA

KA

�
: (Equation 6)

(Continued on next page)
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(Figure S5). Communities are mixed by a magnetic stirrer at a

rate of 450 rpm and sampled through a sterile port.

Monoculture and Pair-Culture Dynamics
To begin, we measured monoculture and pair-culture dynamics

in the high light condition (Figure 1). Pair-culture dynamics be-

tween A and B suggest limited impact of A on B growth rate or

carrying capacity (Figures 1B, 1C, and 1F). Similarly, B does

not measurably impact A growth rate or carrying capacity in

this high light condition (see Table S1 for A growth rates).

In contrast, when B is pair cultured with C, we observe an

approximately 10-fold reduction in the abundances of B relative

to B monoculture. This reduction is expected because of the

known predation of B by C. In these BC pair cultures, predation

of B by C fails to drive B abundances below approximately

105 mL�1, and at longer times B abundances increase (Fig-

ure 1H). Previous measurements of ciliate feeding rates (Fen-

chel, 1980a), however, suggest that at these densities, C should

be able consume most of the B present (STAR Methods). We

propose that the ability of B to sustain comparatively high den-

sities in the presence of C is driven by B aggregation (Blom

et al., 2010). Bacterial aggregation is a common defense against

predation because of the fact that the oral apparatus of the cili-

ates has a limited range of prey sizes it can accommodate (Corno

and J€urgens, 2006; Fenchel, 1980b). Sufficiently large aggre-

gates of B cannot be consumed by C. Indeed, we show that B

aggregates muchmore in the presence of C than in monoculture

(Figure 1E). B aggregation was quantified by side-scatter mea-

surements (Figure S1). We conclude that B abundances are

reduced by predation, but the impact of predation is limited by

aggregation. We also note that C abundances are not substan-

tially impacted by the presence of B. This fact is in accordance

with the low yield of ciliates on bacteria as previous work sug-

gests 13 103 to 43 104 bacteria are required to produce a single

ciliate (see STAR Methods) (Seto and Tazaki, 1971).

Finally, when A and C are pair cultured, the dynamics of C is

minimally impacted relative to C monoculture (Figures 1D and

1G). Taken together, Figure 1 suggests that the dominant inter-

action in the ABC community is predation of B by C, whereas

interactions between A and B or A and C are limited.

Bacterial Invasions of Ciliates
We studied the dynamics of B invading C. We introduced B at a

density of �1 3 104 mL�1 into established cultures of C 4 and

14 days after the initiation of C cultures (Figures 2A, 2D, and

2G). We find that irrespective of the timing of the introduction

Box 1. Continued

_xC = rCxC

�
1� xC

KC

�
: (Equation 7)

_S = � 1

Y
xB

�
rB � rAB

xA
KA

�
S: (Equation 8)

F is feeding rate, and a1 and a2 are aggregation and disaggregation rates of bacteria, respectively. Note that AB do not grow

(consume S) in this model. Ki captures the carrying capacity of species i, and Y is the yield of bacteria growing on S.

For a complete discussion of the modeling decisions we made, see the STAR Methods. Briefly, the first term in Equation 4 cap-

tures the fact that xA only impacts the growth rate of xB and not its final abundance. Substrate is considered explicitly to enforce the

fact that xB cannot recover from predation if it had already reached saturating density. The predation of xB by xC is linear in prey

density, an assumption justified by the relatively low densities of bacteria in our experiment. We neglect growth of xC on xB because

of the low yield of ciliates on bacteria and low densities of bacteria in our experiment. This assumption is supported by the data,

which show no substantial difference in C densities with and without B (Figure S5). Aggregation terms are consistent with our ob-

servations in Figures 1 and 4. In this model, the mode by which bacteria (xB + AB) fail to invade communities of xA and xC is the

disaggregation of AB to xB in a manner that is dependent on xA density (a2ABxA) and the subsequent predation of xB by xC (FxBxC).

rAB, a1, and a2 were inferred from our data; F has been reported previously (Fenchel, 1980a; Hatzis et al., 1993, 1994); and all

other parameters were measured in this study. rAB must be on the order of rB if we are to observe any substantial inhibition of xB
growth by xA. a1 can be constrained by a close examination of the BC pair-culture dynamics (Figure S12), and a2 can be inferred

from the relative abundances of all three species and AB late in the experiment shown in Figure 5C (STAR Methods). With these

parameter values (Table S3), we performed numerical integration of the model in Equations 4, 5, 6, 7, and 8 for the invasion ex-

periments shown in Figure 2. The results are shown in Figure 2, alongside the measurements, where we plot total B abundances

(xB + AB), A abundances (xA), and C abundances (xC).

We note that this model captures the basic features of the invasion experiments: (1) B successfully invades C cultures; (2) B

densities in the presence of C are lower than those for B invasions of low-density A cultures (compare Figures 2A and 2B); (3)

when B invades a high-density A culture, its growth rate is attenuated (Figures 2E, 2H, and 2J) but B eventually reaches high density

(>13 106mL�1); (4) when B is introduced into an AC culture with high-density A, B declines in abundance continuously (Figures 2F,

2I, and 2K); and (5) when B is introduced into an AC culture with low-density A, B invades immediately but slowly declines in abun-

dance over time (Figure 2C). Our deterministic model cannot capture the variability in outcomes of B invading A alone.

A comparison between the two models shows that the presence of a higher-order term depends on the level of description.

Namely, a model that relies on effective interactions, rather than an explicit characterization of the mechanisms mediating those

interactions, requires a higher-order term to correctly account for the interaction modification.
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of B or the light levels, B successfully grows to high densities

(> 1 3 105 mL�1). As in BC pair culture (Figure 1E), side-scatter

intensity for B in invasion experiments confirms B aggregation

in the presence of C (Figure S4). For the purposes of discussion,

we define a successful B invasion as one in which B abundances

exceed 73 104 mL�1 at the end of the experiment or, in the case

of Figure S2C, when B abundances rise above 73 104 mL�1 and

then remain high for several days.

Bacterial Invasions of Algae
Next,we studied thedynamics ofB invadingA (Figures 2B, 2E, 2H,

and 2J). If A densities are low at the time of B invasion, then B suc-

cessfully grows to a high density (Figure 2B).WhenA densities are

high at the time of B invasion, B exhibits either very slow growth

eventually reachinghighdensitiesmore than7daysafter introduc-

tion or crashes to low densities over a period of more than 5 days

(Figure 2E). In these experiments, the ultimate outcome of B inva-

sions is variable, with some succeeding and others failing, even

between two identically prepared replicates (Figures 2H and 2J).

We find that inhibition of B growth by A only occurs when A is at

a high density and that the inhibition occurs both at low and high

light levels (Figures 2E, 2H, and 2J). When A abundances are

high at the time of B introduction, B eventually reaches a high den-

sity (>73104mL�1) 50%of the time (5 of 10 invasionexperiments,

Figures2E,2H,2J, andS8C).However,whenAdensitiesare lowat

the timeofB introduction,B grows to a highdensity immediately in

every replicate (8 of 8 experiments, Figures 1F, 2B, S8A, and

S8B). Note that the inhibitory interaction between A and B is

only apparent when B has not reached stationary phase. If B

reaches stationary phase before A abundances reach roughly

5 3 104 mL�1, we observe no inhibition of B by A, not even once

A abundances exceed 5 3 104 mL�1 later in the experiment

(compare Figures 1C and 1F).

To more thoroughly study the dependence of B invasion suc-

cess on A density, we performed a set of invasion experiments

where B was introduced into A cultures at t = 0 (pair-culture

experiment), 1, 3, and 4 days, all at high light (4,200 Lux) (Figures

S8A–S8D). We found that for those A cultures that exceeded a

density of 5 3 104 mL�1 at the time of B introduction, B growth

was inhibited. We conclude that a threshold on the abundance

of A determines the outcome of B invasions (this threshold is

shown as a green line in Figure 2 when A is present).

We next showed that resource competition is not the mecha-

nism by which A inhibits B growth. We harvested spent media

from an AB invasion experiment at several time points (Figure 2E

pink traces, Figure3C).WefilteredoutbothAandBand inoculated

fresh B cells at a low density into this spent media. We then incu-

bated these cultures and assayed B carrying capacity on the

spent media by flow cytometry. B was able to grow to a high den-

sity (> 105 mL�1) on spent media harvested before �t = 15 days

(Figures 3C and 3D). For spent media harvested after �t =

15 days (when B finally grows to a high density), B can no longer

grow to a high density on the spent media. This result shows that

consumablenutrients exist forB, evenwhileB’s growth isbeing in-

hibited by A. High-density populations of A do not compete with B

for these nutrients but do limit the ability of B to consume them.

Algal Inhibition of Bacterial Growth
We undertook a series of experiments to better understand the

mechanism by which A inhibits B growth. We found that the

Figure 1. Monoculture and Pair-Culture Dynamics with Algae, Bacteria, and Ciliates

(A) A schematic of the custom culture devices used in this study.

(B–D) Abundance dynamics plotted for monocultures of algae (A, circles), bacteria (B, squares), and ciliates (C, triangles), respectively, at 4,200 Lux (high light).

(E) Mean side-scatter signal of B as a function of time in Bmonoculture and BC pair culture. Data from some of these coculture experiments were used to perform

live-dead staining experiments (see Figure S11) and calculate A and C growth rates (see Table S1).

(F–H) Abundance dynamics for AB, AC, and BC pair culture, respectively, also at 4,200 Lux. Gray traces are for monocultures of A, B, or C with the markers

corresponding to (B)–(D). For each experiment, there are two independent replicates. Abundances are measured via flow cytometry. Error bars are computed as

described in the STAR Methods. For time points where error bars are not visible, errors are smaller than the size of the points. B abundances are reported as the

total number of cells including planktonic cells and cells in aggregates (see Figure S1).
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inhibition of B growth by A requires illumination and that the

presence of A alone, in the absence of light, is not sufficient

to inhibit B growth (Figure S8F). Literature on algae-bacteria in-

teractions suggests that reactive oxygen species may be

responsible for bacterial growth inhibition (Morris et al., 2011;

Wojtaszek, 1997), but we showed conclusively that A was not

producing sufficient H2O2 to limit B growth (STAR Methods).

We found that the role of light intensity in the inhibition of B

growth was dependent on the growth history of A (e.g., Fig-

ure S8J). Furthermore, we considered the hypothesis that

increased cell-to-cell contact due to the higher density of A

could be responsible for the inhibition of B growth by A. We

estimated the frequency of B collisions with A to be high even

at low A density, and so we expect that an increase in physical

contact between A and B due to higher A density would not be

responsible for the inhibition (STAR Methods). Additionally,

detailed analysis of our flow cytometry data showed that A

and B stick to each other, but the rate is low (�5%) and does

not change significantly between inhibited and successful

invasions (Figure S10). As a final check, we confirmed that suc-

cessful invasions were not a case of A detritus being misclassi-

fied as B (STAR Methods).

Irrespective of the molecular mechanism of the antagonistic

interaction between A and B, it is clear that the inhibition of B

requires high-density A, light, and a B population that has not

reached stationary phase. Finally, the variable outcomes for B

invading A are in contrast to the reproducible dynamics

observed in Figure 1 and in previous studies (Frentz et al.,

2015), suggesting that there may be stochastic processes at

the single-cell level that are responsible for the inhibition or

that the system is highly susceptible to small experimental vari-

ations near the transition between B inhibition and B growth. We

now turn to the central topic of the present study, the invasion of

B into AC communities.

Bacteria Fail to Invade Algae-Ciliate Communities When
Algal Densities Are High
Next, we performed B invasions of AC cultures (Figures 2C, 2F,

2I, and 2K). We found that in every single case where C is

present and A density exceeds 5 3 104 mL�1 at the time of

Figure 2. Measurement and Modeling of

Bacterial Invasion Dynamics

Measurements of abundance dynamics during in-

vasions are shown with numerical simulations of a

mathematical model of ABC interactions. As

labeled on the right, panels are paired, with mea-

surements (lines + markers) in the top panel and

simulations (curves) on the bottom. A, B, and C

abundances are shown in green, red, and blue,

respectively. B invasions of C (left column), A

(middle column), or AC (right column) occurred in

either 1,600 Lux (low light) or 4,200 Lux (high light)

at day 4 or 14 as indicated for each row on the left.

In each condition (community composition, light

intensity, and invasion time), at least two replicate

communities were measured. Labels in each

panel, that is, ‘‘success,’’ ‘‘failure,’’ or ‘‘mixed,’’

indicate the classification of the outcome of

bacterial invasion, with success defined as B

exceeding a density of 7 3 104mL�1 for an

extended period of time. The horizontal green line

at 53 104mL�1 indicates a threshold on A that was

determined in control experiments (Figures S8A–

S8D). When A exceeds this threshold, B invasions

can be inhibited. In (E), pink traces for B and light

green traces for A denote experiments in which

spent media measurements were performed (Fig-

ure 3C). Abundances are measured via flow

cytometry. Error bars are computed as described

in the STAR Methods. For time points where error

bars are not visible, errors are smaller than the

size of the points. For time points where C abun-

dances are not shown, no ciliates were detected.

B abundances are reported as the total number of

cells including planktonic cells and cells in aggre-

gates (see Figure S1). Simulation of the model is

described in the text and STAR Methods. Abun-

dance dynamics of A (xA ), B (xB+AB), and C (xC) are

shown in green, red, and blue, respectively. The

model is given by Equations 4, 5, 6, 7, and 8.

Parameter values are given in Table S3.

See also Table S2 and Figures S5, S12, and S13.

For a complete discussion of themodel, see Box 1.
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B introduction, B fails to invade and ultimately declines to very

low densities (Figures 2F, 2I, and 2K). This result stands in

contrast to B’s successful invasions of A or C alone. When B

is introduced into an AC community with a low A density

(<5 3 104 mL�1), B grows to a high density and then slowly de-

clines in abundance later in the experiment (Figure 2C). We

conclude that if C is present and A is at a high density at the

time of B introduction, B cannot proliferate and ultimately de-

clines to low abundance. B’s failure to invade AC cultures is

the main finding of this study.

One possible explanation for this finding is that AC commu-

nities with high A densities have exhausted a critical nutrient

for B growth. Spent media experiments again show this not to

be the case. We performed a series of spent media experiments

where communities with A, C, or A and C were grown, samples

were harvested, and then all cells were removed by filtration (Fig-

ures 3A and 3B). B was then inoculated into this spent media and

grown to saturation in a 96-well plate where its abundance was

assayed by flow cytometry. This measurement captures the car-

rying capacity of bacteria on the spent media. We find that B is

able to grow on the spent media of A, C, and AC communities

to a saturating density that is indistinguishable from growth on

fresh media, irrespective of the time at which the spent media

was taken (Figure 3B). This result rules out the hypothesis that

nutrient competition accounts for any of the invasion outcomes

in Figure 2.

Because pH is known to play an important role in mediating in-

teractions in microbial communities (Fierer and Jackson, 2006),

we also considered the role of pH in determining the outcome of

B invasions. For most of the experiments shown in Figure 2, we

measured pH at the end of the experiment (Table S2). The final

pH varied between about 6.5 and 8.9, but we observed no clear

correlation between the final pH and the success or failure of the

B invasion. For example, at high light AC tinv = 4 days, B fails to

invade, and the final pH is slightly acidic (�6.6). Conversely, even

in the low light AC tinv = 14 days, B fails to invade, and the final pH

is �8.25.

The results of Figure 2 suggest that a higher-order effect, un-

expected from pairwise interactions, governs the outcome of B

invasions of AC communities. Only when A and C are both pre-

sent do B invasions reliably fail. Next, we sought to understand

the mode of this effect through experiments, and more formally

through modeling (see Box 1 and STAR Methods).

Algae Enhance Ciliate Predation of Bacteria in a
Density-Dependent Fashion by Inhibiting Bacterial
Aggregation
We propose that a higher-order interaction is responsible for the

fact that B cannot invade an AC community when A abundances

exceed 5 3 104mL�1: high-density A induces B to remain in a

planktonic (single-celled) state, robbing B of aggregation, its pri-

mary defense mechanism against predation by ciliates (Fig-

ure 1E). The mechanism we propose here is consistent with

what ecologists have previously called an interaction modifica-

tion (Wootton, 1994).

First, we show that B aggregation is inhibited by high-density

A. Note that as bacteria grow inmonoculture, they initially aggre-

gate and then ultimately disaggregate (Figure 1E, orange traces).

This non-monotonic change in aggregation is potentially due to

substrate-level-dependent aggregation rates observed previ-

ously (Merritt and Kuehn, 2016, 2018). When A and B are grown

in pair culture, the aggregation and subsequent dispersal of B is

nearly identical to what we observe in B monocultures (compare

red traces in Figure 4E to orange traces in Figure 1E). Similar B

aggregation dynamics are observed when B invades a low-

density A culture (Figures 4B and 4E). However, when B invades

at day 4 into a high-light (4,200 Lux) A culture that has reached

1 3 105mL�1, B does not grow immediately (Figure 4C), and

for the duration of this growth inhibition, their aggregation is in-

hibited (Figure 4E, black traces). Only once the inhibitory effects

Figure 3. Spent Media Experiments Reveal

Absence of Nutrient Competition and Pres-

ence of Disaggregating Effect of Algae on

Bacteria

(A) Abundance plotted versus time for two repli-

cates of an algae monoculture at 1,600 Lux (low

light). Black arrows indicate the time points when

media is extracted and filtered. Bacteria are then

grown on this spent media in a microtiter plate

until it reaches saturation. The saturating density

KB is measured via flow cytometry. This experi-

ment is also performed on a 1,600 Lux C mono-

culture, 1,600 Lux AC coculture, and 4,200 Lux

AC coculture.

(B) KB is plotted for all the conditions. The x axis

indicates the day of extraction of spent media.

(C) The same spent media extraction experiment is

performed on a monoculture of algae that is

invaded with bacteria. This means that the spent

media taken from this culture has already been

exposed to bacteria.

(D) KB plotted versus day of spent media extraction

for the experiment in (B).

(E and F) (E) Reproduction of (A). (F) Mean side-scatter of the bacteria after they reach KB is plotted versus time of spent media extraction from cultures in (E).

The point at time zero represents the mean side scatter of bacteria that were grown on fresh media.

See Figures S8, S10, and S9.

Cell Systems 9, 1–13, December 18, 2019 7

Please cite this article in press as: Mickalide and Kuehn, Higher-Order Interaction between Species Inhibits Bacterial Invasion of a Phototroph-Predator
Microbial Community, Cell Systems (2019), https://doi.org/10.1016/j.cels.2019.11.004



of the algae are overcome by B after 10 days can B grow and

aggregate. We conclude that algae inhibit bacterial aggregation

in a manner that depends on the density of algae.

We investigated the inhibition of B aggregation by A further by

examining the effect of A spentmedia on the ability of B to aggre-

gate (Figure 3F). Using data from the previously described spent

medium experiment, we examined the aggregation state of B

(using mean side scatter as a proxy) as a function of the time

at which the spent media was extracted from the growing A cul-

ture. We find an inverse relationship between the extraction time

of spent media and level of B aggregation when grown on that

spent media. The fact that A is not physically present in the spent

media suggests that its ability to inhibit B aggregation is medi-

ated by a chemical rather than a physical interaction. Interest-

ingly, while spent media from an A monoculture disaggregates

B, it does not inhibit growth of B. This result indicates that aggre-

gation is not necessary for B to grow in this media. The indepen-

dence of aggregation and growth is supported by the fact that a

B mutant deficient in aggregation (DcsgA) grows in monoculture

on this media without aggregating (Figure S4L). Our observation

that A disaggregates B is qualitatively consistent with observa-

tions that Chlamydomonas can secrete signaling molecules

such as auto-inducers, which can interfere with biofilm formation

(Teplitski et al., 2004).

C has the opposite effect on B in that it induces B to aggregate

(Figures 1E and S4). In all cases where only B and C are present,

aggregation of B greatly exceeds that in B monoculture or AB

pair culture. We conclude that A and C have opposing effects

on the aggregation state of B, with A inhibiting and C enhancing

aggregation.

We hypothesize that the failure of B to invade a culture of C

and high-density A (Figure 5C) is due to A inhibiting B aggrega-

tion and subsequently increasing the predation pressure of C

on B. Under this hypothesis, we expect that when B fails to

invade an AC community, B will have failed to aggregate, and

this is what we observe (Figure 5E). Conversely, when B suc-

cessfully invades an AC community (which occurs when A is at

a low density at the time of B introduction), B aggregates effec-

tively as we expect, thus evading predation from C (Figures 5B

and 5E). We conclude that when A inhibits B aggregation, this

results in stronger predation of B by C, thus driving bacterial

abundances down in time.

Taken together, the findings presented in Figures 2, 4, and 5

show that A reduces B aggregation, which renders the bacteria

susceptible to predation by C. When the interaction between

two species is modified by the presence of a third, this process

is often termed ‘‘higher order’’ because all three species must be

present in order for this interaction to affect the abundance dy-

namics of B. In order to confirm that such an interaction would

explain our data and also to generalize our result, we sought a

quantitative model of the dynamics in this community (Box 1).

Impact of Higher-Order Interaction Is Apparent in ABC
Tri-culture Abundance Dynamics
We asked whether the model (Box 1; Equations 4, 5, 6, 7, and 8)

could provide non-trivial predictions regarding community

Figure 4. Algae Suppresses Bacterial Aggregation

(A–C) A abundances are shown in green. Color of B abundance trace varies in (A)–(C) as indicated in the legends. (A) Abundance dynamics for two replicates of

a high light (4,200 Lux) AB pair culture (tinv = 0 days). (B) Abundance dynamics for two replicates of a B invasion on A in low light (1,600 Lux) with tinv = 4 days.

A density is ~13 104mL�1 at the time of B introduction. (C) Abundance dynamics for four replicates of a B invasion on A in high light (4,200 Lux) with tinv = 4 days;

A density is > 1 3 105mL�1 at the time of B introduction. Abundances are measured via flow cytometry. Error bars are computed as described in the STAR

Methods. For time points where error bars are not visible, errors are smaller than the size of the points. B abundances are reported as the total number of cells

including planktonic cells and cells in aggregates (see Figure S1).

(D) Overlay of B abundances from (A), (B), and (C), translated so that t = 0 corresponds to the time of B introduction.

(E) Overlay of the mean side-scatter signal of B, translated so that t = 0 corresponds to the time of B introduction. The low side-scatter signal at the final time point

in one of the black traces arises from a small number (20) of counts. Colors of traces in (D) and (E) correspond to (A)–(C).

(F) Diagram of interactions for A and B. Blunt arrowhead from A to B indicates the inhibition of B growth by A. Blunt arrow from A to the transition between

planktonic and aggregated B indicate the inhibition of B aggregation by A. (A) is reproduced from Figure 1F, and (B) and (C) are reproduced from Figures 2B

and 2E. For more data on interactions between A and B, see Figures S8 and S10.
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dynamics. We note that all parameters in the model are deter-

mined either from invasion data or from monoculture or pair-cul-

ture experiments. Therefore, to investigate, we simulated the dy-

namics of the ABC tri-culture under the two light regimes. The

model predicts that under high light conditions, where xA rapidly

approachesKA, bacterial abundances (xB +AB) are attenuated at

long times. In contrast, for low light conditions where xA does not

reach high density until the very end of the experiment, ourmodel

predicts limited attenuation of bacterial abundances (compare

Figures 6C and 6D). The lower bacterial abundances observed

in our simulation at high light arise from reduced bacterial aggre-

gation and increased predation of B by C (Figure 6F).

To test the predictions of the model, we performed tri-culture

experiments with the full ABC community at low and high light

levels. The dynamics are shown in Figures 6I and 6J. In the full

ABC ecosystem, the growth rate of A differs by more than a fac-

tor of 4 between the two light levels (0.016 h�1 for low light versus

0.073h�1 for high light). The slow growth rate of A in low light re-

sults in A reaching saturation only after 14 days. In contrast, in

high light, A reaches saturating densities in 4 days. When we

compare the dynamics of B in the full ABC ecosystem in low

and high light, we observe that high light results in a substantial

decline in bacterial abundances by the end of the experiment

(Figure 6K, purple and black traces). In contrast, when B is grown

with only C (and not A) in high light, there is no decline in B abun-

dances at long times (Figure 6K, orange and purple traces).

When we examine the bacterial aggregation state in the ABC

low light and high light conditions, we find less B aggregation

in the high light condition (Figure 6L). The results shown in Fig-

ure 6 do not depend on the aggregate correction algorithm we

applied to bacterial abundances (Figure S3).

DISCUSSION

Our results show that phototrophs can indirectly decrease the

population density of heterotrophic bacteria by modification of

the nature of bacterial interactions with predators. Phototroph-

heterotroph interactions are known to be mediated by competi-

tion and cross-feeding (Sher et al., 2011), but our data provide a

newmode by which phototrophs might keep faster-growing het-

erotrophs from consuming available nutrients such as nitrogen

or phosphorous.

In the context of the invasion literature, recently summarized

by Mallon et al. (2015), our results show that resource compe-

tition alone is insufficient for predicting the outcome of inva-

sions in communities where antagonistic interactions such as

predation are present. The result has important implications

for understanding community structure from coral reefs to

wastewater treatment facilities where such interactions are

known to be important (Ravva et al., 2013; Rodriguez-Brito

et al., 2010).

We have shown that the ABC system exhibits what we term a

higher-order interaction. Our usage of the term ‘‘higher order’’ is

consistent with the ecological literature on the subject (Billick

and Case, 1994) but deserves some clarification. What we

have shown is that the collective impact of A and C on the aggre-

gation of B results in a change in B abundances that is not

observed in communities of A and B or B and C alone. The

Figure 5. Algae Inhibit Bacterial Aggregation Enhancing Ciliate Predation, Resulting in Invasion Failure

(A–C) A and C abundances are shown in green and blue, respectively, in all panels. Color of B traces differs between (A)–(C) as shown in the legends. (A)

Abundance dynamics for two replicates of a 4,200 Lux (high light) tinv = 4 day B invasion on a C culture. (B) Abundance dynamics for two replicates of a 1,600 Lux

(low light) tinv = 4 day B invasion on an AC culture. A density is 23 104mL�1 at the time of B introduction. (C) Abundance dynamics for four replicates of a 4,200 Lux

(high light) tinv = 4 day B invasion on an AC culture. A density is > 13 105mL�1 at the time of B introduction. Abundances are measured via flow cytometry. Error

bars are computed as described in the STAR Methods. For time points where error bars are not visible, errors are smaller than the size of the points. B abun-

dances are reported as the total number of cells including planktonic cells and cells in aggregates (see Figure S1).

(D) Overlay of B abundances from (A) (B), and (C), translated so that t = 0 corresponds to the time of B introduction.

(E) Overlay of mean side-scatter signal of (B) translated so that t = 0 corresponds to the time of B introduction. Colors of traces in (D) and (E) correspond to (A)–(C).

(F) Diagram of interactions between A, B, and C. Blunt arrowhead from C to planktonic B indicates C reducing B abundances. Blunt arrowhead from A to

B indicates the inhibition of B growth by A. Arrows from A and C to the transition between planktonic and aggregated B indicate their respective impacts on

B aggregation. (A), (B), and (C) are reproduced from Figures 2D, 2C, and 2F, respectively. For more data on how C enhances B aggregation, see Figure S4.
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impact of A and C on B is therefore what ecologists have termed

an interaction modification (Wootton, 1994). Interaction modifi-

cations are higher order in the sense that they require a term

that is the product of three species abundances when using a

model that characterizes the impact of each species on the per

capita growth rate of other species via effective interactions

(Bairey et al., 2016; Billick and Case, 1994). However, a model

that includes a more detailed specification of the bacterial pop-

ulation (planktonic and aggregated cells) does not require such a

term. We have shown that a model that neglects the phenotypic

differentiation in the bacterial population and subsumes these

effects into effective interactions indeed contains a three-body

term (xAxBxC), as expected from theory. We therefore conclude

that the process we observe is a higher-order interaction. We

note that our usage of the term higher-order interaction is consis-

tent with this ecological definition of higher-order processes but

not with more stringent definitions in physics.

Recent theoretical studies exploring models that describe

community dynamics at the level of abundances (e.g., Equa-

tion 1), but neglect microscopic details such as metabolites

and phenotypes, suggest that higher-order interactions (interac-

tion modifications) of the type studied here enhance the stability

of complex communities. In contrast, communities where abun-

dance dynamics can be described by pairwise interactions at the

level of abundances become less stable as complexity

increases (Bairey et al., 2016; Grilli et al., 2017). The results sug-

gest that higher-order interactions may be important for explain-

ing the complexity of natural communities.

Figure 6. Higher-Order Interaction Impacts Algae-Bacteria-Ciliate Tri-culture Abundance Dynamics

(A–F) Simulations of abundance dynamics for themodel given in Equations 4, 5, 6, 7, and 8 in tri-culture conditions where all species are introduced at low density

at t = 0 days. All model parameters are given in Table S3. In all panels, xA and xC are shown in green and blue, respectively. The color of B (xB + AB) varies as

indicated in (A)–(D) to facilitate the overlay plots in (E) and (F), which show total B abundances (xB + AB (E)) and aggregating cell abundances (AB only (F)). The

legend from (E) applies to (F).

(G–L) Experimental measurements of tri-culture abundance dynamics corresponding to (A)–(F). Replicate communities are shown in each condition. Abundances

are measured via flow cytometry. Error bars are computed as described in the STAR Methods. For time points where error bars are not visible, errors are smaller

than the size of the points. B abundances are reported as the total number of cells including planktonic cells and cells in aggregates (see Figure S1). Note that the

color of the traces for B abundances in (G)–(J) correspond to those in (A)–(D) as indicated in the legends. (J) Mean side scatter (which is a proxy for level of

aggregation) of the B population from (G)–(J). The legend from (K) applies to (L). (K) Overlay of abundance dynamics for B from (G)–(J).

See also Figure S3 and Tables S2 and S3
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Several studies have previously detected the presence of

higher-order interactions (Losey and Denno, 1998; Wootton,

1994). For example, a recent study of interactions between

Streptomyces soil isolates mediated by antibiotic excretions

showed similar interaction modification effects (Abrudan et al.,

2015). Moreover, statistical analyses of interactions between

limpets, barnacles, and algae suggested the presence of a

higher-order interaction whereby barnacles interfere with limpet

grazing of algae (Dungan, 1986). However, direct measurements

of the impact of higher-order interactions on invasions is limited.

In contrast, several studies of dynamics in communities where

interactions are mediated by resource competition have shown

that pairwise interactions are sufficient to describe community

dynamics (Friedman et al., 2017; Vandermeer, 1969). Our study

shows that for a model community that includes predation and

little or no competition for resources, higher-order interactions

are not only present but also have substantial impacts on dy-

namics (Figure 6). To move theory closer to observation and

experiment, it will be critical to investigate whether higher-order

interactions are more common when predation is present or not.

Two previous studies on the ABC community, or a closely

related ecosystem with C. reinhardtii replaced with Euglena

gracilis, under hermetically sealed conditions have looked at

interactions between these species. One study compared inter-

actions inferred from abundance fluctuations in the full three

species community to interactions measured via pair-culture ex-

periments (Hekstra et al., 2013). A second study also used pair-

wise experiments (Matsui et al., 2000). In the case of the pairwise

experiments, both studies detected evidence for the antago-

nistic effect of A and C on B. Interestingly, inference of pairwise

interactions from abundance fluctuations in an ensemble of ABC

communities did not identify these negative interactions (Hekstra

et al., 2013) and instead inferred positive effects between all

three species. This result points to the challenge of inferring in-

teractions from fluctuations in time series data (Fisher and

Mehta, 2014; Ives et al., 2003; Stein et al., 2013). Inferring inter-

actions from fluctuations should work well near a fixed point of

the community dynamics. However, understanding the full

non-linear dynamics governing the community is likely a neces-

sity for predicting the outcome of processes such as invasion

where abundances can change by several orders of magnitude.

Finally, neither previous study of the ABC system made a state-

ment about the presence of higher-order effects in the commu-

nity or the mechanisms mediating these interactions.

More broadly, our study has important implications for under-

standing the structure of natural microbial communities where pri-

mary production is driven by phototrophic microbes. In these

ecological contexts, phototrophs exist not in isolation but in close

association with heterotrophic bacteria (Stocker et al., 2008).

Chemically mediated direct interactions between phototrophic

algae, diatoms and cyanobacteria, and their associatedheterotro-

phic bacterial communities are characterized by signaling interac-

tions (Teplitski et al., 2004), competition, and antagonism (Paul

and Pohnert, 2011). It has been observed that specific bacterial

taxa often adhere directly to the surface of phototrophicmicrobes

(Kimbrel et al., 2019), and this close physical proximity likely facil-

itates efficient exchange of metabolites. These interactions are

thought to link the abundance dynamics of phototrophicmicrobes

and their associated heterotrophic bacteria. For example, bacte-

rial successions appear to bedrivenby carbonexcretedbyphoto-

trophs during blooms (Teeling et al., 2012), and competition for

nitrogen and phosphorous is believed to play a key role in photo-

troph-heterotroph interactions (Cole, 1982).

However, the role of phototrophs in mediating interactions

between bacteria and their predators is not widely appreci-

ated. The enhancement of predation pressure on bacteria

due to the presence and metabolic activity of phototrophs

might provide an indirect mechanism by which phototrophs

can outcompete faster-growing heterotrophic bacteria for

essential nutrients. For predators, our results suggest that

phototrophs might unlock bacterial populations from aggre-

gates, potentially driving associations between phototrophic

microbes and protozoa. In the future, it will be important to

connect these collective effects on population dynamics to

the fluxes of nutrients such as carbon, nitrogen, and phospho-

rous through the community, which play a key role in the

biogeochemical cycles on Earth.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Seppe

Kuehn (seppe.kuehn@gmail.com). The study did not generate newmaterials. Flow cytometry data and code for simulations are freely

available, see Key Resources Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains
The alga is C. reinhardtii, strain UTEX2244 obtained from the University of Texas Austin Culture Collection of Algae utex.org. All C.

reinhardtii cells are of a single mating type mt+ and grow vegetatively. Algae are cryogenically preserved and stored in liquid

nitrogen https://utex.org/pages/cryopreservation#liquid. The E.coli strain is MG1655 Dflu, DfimA and was constructed previously

(Hekstra and Leibler, 2012). These mutations reduce biofilm formation and aggregation, flu encodes a cell-cell adhesion protein

(Ag43) and fimA a structural unit of fimbrae (Hasman et al., 2000; Kjaergaard et al., 2000). A constitutively expressed yellow fluores-

cent protein (YFP, promoter lPR) was transduced into the genome with phage P1. The donor strain for YFP fluorescence has the YFP

gene inserted in the intC locus along with a chloramphenicol antibiotic resistance marker (Elowitz et al., 2002). The DcsgA strain was

constructed by P1 transduction from KEIO collection (Baba et al., 2006) mutant into MG1655 (WT) background. The same YFP

construct was also transduced into this strain. The ciliate is T. thermophila, strain CU428.2 obtained from the Cornell University Tetra-

hymena Stock Center https://tetrahymena.vet.cornell.edu/. All T. thermophila cells are of mating type VII so there is only asexual

reproduction. This strain grows vegetatively indefinitely without sexual reproduction. Ciliates were cryogenically frozen and stored

in liquid nitrogen (Cassidy-Hanley et al., 1995).

Culturing
Before beginning the experiment, each of the organisms is cultured separately in distinct media. A is cultured in a 30�C shaker-incu-

bator with �3000 Lux illumination in Tris-Acetate-Phosphate (TAP) media inoculated directly from a freezer stock. Algae used in

co-culture experiments (low-light), A, AC, ABC and (high light) A, AC and ABC were grown at 25�C prior to the experiment. TAP is

a defined media with acetic acid as a carbon source https://www.chlamycollection.org/methods/media-recipes/tap-and-tris-

minimal/. C is cultured in a 30�C stationary incubator in (undefined) SPP media inoculated directly from a freezer stock. B was

cultured in a 30 �C shaker-incubator in 1/2x Taub 0.03% proteose peptone No. 3 inoculated from a single colony grown on an

lysogeny broth (LB) plate.

Control of Initial Conditions
The cultures of each of the three organisms are washed twice into 1/2x Taub .01% Proteose Peptone No. 3. Flow cytometry is per-

formed on a sample from each washed culture to estimate cell densities. The cultures are then diluted into 1/2x Taub .01% proteose

peptone No. 3 in order to achieve nominal densities of 500 ± 22 mL�1 for A, 1000 ± 32 mL�1 for B, and 500 ± 22 mL�1 for C. Error

bars are assumed from Poisson counting error. Organisms are always started at these densities at the beginning of an experiment,

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli ns2. DfimA Dflu Hekstra and Leibler. Cell 2012. N/A

Escherichia coli. intC::YFP Wang et al. Curr. Biol. 2010 SJ102

Escherichia coli . DcsgA Coli Genetic Stock Center 8997

Phage P1 N/A N/A

Deposited Data

Raw abundance measurements by flow cytometry

and code for simulations.

This work https://doi.org/10.13012/

B2IDB-0946028_V1

Experimental Models: Organisms/Strains

Chlamydomonas reinhardtii UTEX 2244 (cc-125 WT mt+) University of Texas culture

collection of algae

2244

Tetrahymena thermophile CU428.2 (mpr1-1/mpr1-1

(MPR1; mp-s, VII))

Cornell University Tetrahymena

Stock Center

TSC_SD00178

e1 Cell Systems 9, 1–13.e1–e10, December 18, 2019

Please cite this article in press as: Mickalide and Kuehn, Higher-Order Interaction between Species Inhibits Bacterial Invasion of a Phototroph-Predator
Microbial Community, Cell Systems (2019), https://doi.org/10.1016/j.cels.2019.11.004

mailto:seppe.kuehn@gmail.com
http://utex.org
https://utex.org/pages/cryopreservation#liquid
https://tetrahymena.vet.cornell.edu/
https://www.chlamycollection.org/methods/media-recipes/tap-and-tris-minimal/
https://www.chlamycollection.org/methods/media-recipes/tap-and-tris-minimal/
https://doi.org/10.13012/B2IDB-0946028_V1
https://doi.org/10.13012/B2IDB-0946028_V1


regardless of whether that experiment is monoculture, pair-culture, or tri-culture. For B invasion experiments the starting density

was �1 3 104mL�1.

Experimental Conditions
All experiments are performed in 1/2x Taub .01% proteose peptone No. 3. This media is used because it is similar to media used in

previous studies with the ABC community (Frentz et al., 2015; Hekstra and Leibler, 2012) and because each of the three organisms

can grow on this media in monoculture, pair-culture, and tri-culture. Taub media is a freshwater mimic media that was

originally created to support co-cultures ofDaphnia pulex andChlorella pyrenoidosa (Taub and Dollar, 1964; Hekstra, 2009). It contains

15mMH3BO3; 0.5mMZnSO4; 3.5mMMnCl2; 0.5mMNa2MoO4; 0.1mMCuSO4; 0.5mMCo(NO3)2; 100mMMgSO4; 100mMKH2PO4; 5.6mM

EDTA; 5.6mMFeSO4; 1.5mMNaCl; and 1mMCaCl2. Proteose peptone No. 3 is an undefined nutrient source that is an enzymatic digest

of protein and supplies nitrogen and carbon [http://www.bdbiosciences.com/ds/ab/others/Proteose_Peptone_No_2_3_4.pdf]. The

media is titrated to pH 7 before use.

Each of the eight vials are kept in an experimental apparatus for the duration of the experiment. The vial fits snugly into a metal

block that is held at 30+C via proportional-integral-derivative (PID) control. Temperature is measured by a thermometer embedded

in the metal block and heating/cooling is performed by a Peltier element (Merritt and Kuehn, 2016). The temperature within a vial fluc-

tuates with standard deviation 0.02+C as determined by the feedback thermometer embedded in the metal block housing the vial.

The temperature across the eight vials varies with standard deviation 0.08+C as measured in a control experiment where each vial is

filled with water and the temperature is measured using a high-accuracy Fisher Scientific Traceable Thermometer (p/n: 15-081-102)

and taking the standard deviation across vials.

The vial is illuminated by a single LED (Cree XLamp XP-E2 Single 1 Up Neutral White 4000 K color temperature, LED Supply p/n:

CREEXPE2-740-1) from below. The spectrum of the LEDs used in this study is shown in Figure S7. We report both lux (which is a

measure of intensity spectrally weighted towards the green) and mmolm�2 s�1 for those readersmore familiar with the latter measure.

To approximately convert between these two measures we used a conversion factor based on a Phillips Luxeon 4000 K color tem-

perature LED (https://docs.agi32.com/AGi32/Content/adding_calculation_points/PPFD_Concepts.htm). The LED is driven by an

LED driver (BuckPuck DC LED Driver LED Supply p/n: 03021-D-E-350) and the intensity of these LEDs was found to be too high

for bacterial growth and is decreased through the use of a neutral density filter. The illuminance is further modulated by applying

a voltage to the control pin of the LED Driver. Experiments are performed at either low light (1600 ± 140 Lux) or high light (4200 ±

330 Lux). These values represent the time-averaged illuminance an organismwould experience assuming it spends an equal amount

of time at each height in the vial. These values are calculated based on measurements of illuminance taken from the top of the metal

block with a light meter (LED Light Meter p/n: PCE-LED 20). Error bars are standard deviation across systems. The light levels are on

the same order of magnitude as those used in a previous study of the ABC ecosystem (Frentz et al., 2015). The experimental appa-

ratus is mounted on a stir-plate (Thermo Scientific Cimarec-i Mono Direct Stirrer 50095601) that keeps cultures stirred at

444 ± 4 RPM. This rotation speed was measured with a custom Hall Probe. At this stirring rate in our vials the Reynolds number

is 104 which is high enough to ensure homogenous mixing of the community. Mixing ensures that samples used for flow cytometry

accurately represent abundances in the vial. At these stirring rates we expect shear stress to change algal photosynthetic activity by

<5% (Leupold et al., 2013).

METHOD DETAILS

Sampling of Communities for Flow Cytometry
Samples of communities are taken via a syringe attached to a sterile port. 500mL are drawn from the vial for each sample. This pro-

cess constitutes destructive sampling of the community. Over the course of a typical experiment, 16 samples are taken from the vial

which corresponds to 8 mL being removed from the vial. The depth of liquid in the vial decreases by 1.65 cm from its initial depth

of 6.25 cm.

Abundance Measurement by Flow Cytometry
Flow cytometry is performed using a Becton-Dickson LSR II. To count bacteria, YFP fluorescence is plotted versus side-scatter

(SSC) and cells are gated manually. To count algae, Chlorophyll-b fluorescence is plotted versus YFP fluorescence and gated manu-

ally. To count ciliates, CFP fluorescence is plotted versus SSC and the gate is drawnmanually. Correct gating is confirmed bymaking

measurements on monocultures. Because of the size difference between bacteria and ciliates, the two organisms scatter vastly

different amounts of light and so a different gain is appropriate for the SSC channel for each. We therefore run every flow sample

on two different gain settings.

Calibration of Flow Rate to Infer Densities
To report densities we calibrate the liquid flow rate through the flow cytometer using Spherotech Accucount fluorescent beads

(ACFP-50-5, 5.0-5.9 mm) which come at a known concentration of 2 3 106mL�1. The beads are diluted tenfold and run for 30 s,

the same duration that ecosystem samples are run. From the number of beads detected in 30 s we compute a flow rate. For every
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time point in the abundance data, we perform three replicates of this volume calibration. We assume that the volume calibration ap-

plies to all samples run at that time point (within�1 hour of the calibration of the cytometer). Over the course of this study (2 years) we

observed a decrease in the LSR II flow rate by 60%.

Spent Media Experiments
In spent media experiments, cultures are prepared and grown as normal. To obtain spent media, several hundred microliters are ex-

tracted from the culture and filtered through a 0.22 mmpolyethersulfone (PES) filter. Spent media is stored at 4+C until all spent media

extractions are complete. Spent media is then added to a 96-well microtiter plate and inoculated with bacteria and, depending on the

experiment, ciliates. The plate is shaken and incubated at 30+C for two or three days so that bacteria can grow to saturation. Bacterial

abundances are then measured via flow cytometry.

Algae and Ciliate Growth Rates
We calculated growth rates for algae and ciliates in all coculture experiments (Table S1). Growth rate was calculated by fitting a line to

the linear portion of the natural logarithm of that species’ abundance in time. Error on growth rate is calculated as a 95% confidence

interval. Algae growth rates at 1600 Lux (low light) were significantly different for different species compositions and we thus report a

mean growth rate over replicates for each species composition. For algae at 4200 Lux (high light), or ciliates at either light level,

growth rates were not significantly different across species compositions and we thus report a single mean growth rate over all rep-

licates of all species compositions. Error onmean growth rate is calculated as standard deviation across replicates. We do not report

growth rates here for bacteria since the time resolution of our flow cytometry measurement is too coarse to reliably measure bacterial

growth rates. Bacterial growth rate is instead measured using continuous absorbance measurements in a plate reader.

Bacterial Aggregation
In the main text we report that side scatter signal of bacteria (YFP fluorescence) reflects the aggregation of bacteria, with higher side

scatter levels indicating larger bacterial aggregates. Here we support this claim experimentally.

Vortex experiment confirms side-scatter measures aggregation High side-scatter bacterial objects were originally suspected to be

aggregates of bacteria for two reasons. 1) Side-scatter is a measure of how much light is scattered at a 90 degree angle when an

object passes through the flow cytometer and larger objects tend to scatter more light. Indeed the ciliates, the largest of the three

organisms, has the highest side-scatter signal. Since aggregates of bacteria are larger than single cells, they should have higher

side-scatter signal. 2) The high side-scatter portion of the bacterial population stays present throughout an experiment only when

ciliates are present and ciliates are known to induce bacteria to aggregate (see main text for Discussion).

Culture Devices and Conditions
During the experiment, 30 mL of culture are grown in a glass vial (Chemglass CG-4902-08 40 mL volume). A 0.1 mm filter allows gas

exchange between the culture and the atmosphere. We expect this gas exchange (venting) coupled with stirring allows the commu-

nity to be rapidly equilibrated with atmospheric O2 and CO2 concentrations. Eight vials are run in parallel.

We performed a vortexing experiment to test if high side-scatter signal bacterial objects were indeed aggregates. In the experiment

we performed flow cytometry on a sample of bacteria (Figure S1A), vortexed the sample, and then performed flow cytometry again

(Figure S1B). We hypothesized that vortexing would break up aggregates. This hypothesis lead to two clear predictions: (1) that the

number of bacterial objects would increase, due to aggregates being broken up into multiple objects, and (2) that vortexing would

reduce the number of high side-scatter objects. Both predictions were confirmed. By comparing the bacterial object abundances

from before and after vortexing, one can see that abundances increased after vortexing. By comparing the histograms of side scatter

signal of bacterial objects (Figure S1C), one can see that the number of high side-scatter bacterial objects decreased after vortexing.

In addition, one can see that vortexing does not affect the location of the peak of the histogram, which therefore presumably corre-

sponds to single-celled bacteria and which are not disrupted by vortexing.

Construction of bacterial aggregate correction algorithm
In order to estimate the true number of bacterial cells, we devised a technique to estimate the number of bacterial cells in an aggre-

gate. Having confirmed in the previous section that side-scatter signal correlates with the number of bacteria in an aggregate, we

seek an expression for the number of bacteria (N) as a function of the magnitude of the side scatter signal for each object (S). We

assume that for objects below a threshold value of S<t then N(S) = 1. We set t to a value which corresponds to the right shoulder

of the left mode of the distribution in Figure S1E. For aggregates, objects with S>t, we take the ansatz that N(S) = aSb

b is an exponent which represents how the number of cells in an aggregate scales with the side-scatter signal and a is a prefactor.

We chose this form because it is monotonic with S, it is possible to infer these parameters from our data, and scattering theory for

simple objects (e.g. spheres) shows that the scaling of scattered light intensity is polynomial in particle size.

The first step in determining a and b is to define t. t should be the value of side-scatter past which bacterial objects are predom-

inantly aggregates.We estimate this value by plotting a histogramof side-scatter signal of bacteria andmarking the point at which the

approximately Gaussian curve (representing single cells) turns into a tail (Figure S1E). Based on visual inspection of histograms of

side-scatter, we set t = 300.
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In all flow cytometry data reported up to this point, what is reported is the log of the fluorescence or scattered intensity. When data

files of the format used in this study (fcs2.0) are exported from the flow cytometer, all fluorescence/scattering intensities are given as

integers on a scale from 0 to 1023 (10-bit ADC), where 0 represents no signal and 1023 represents a signal which saturates the photo-

multiplier tube. The user is given the option of whether they want the data to be log-transformed or not. Our data are log-transformed

since this affords us a larger dynamic range. Therefore, our flow data report log(S) rather than S. In order to follow our ansatz above it

is necessary to transform our flow cytometry data from a logarithmic to a linear scale. However, the coefficients of the exponential

transformation are not given by themanufacturer of the instrument, so it was necessary to infer the parameters of this transformation.

To accomplish this we exported a single dataset on a linear and log scale (e.g.S and log(S)). From these two datasets we inferred that:

S = 0:0899e:0092logðSÞ

(Figure S1F) Therefore, our threshold on logðSÞ of 300 is 1.41 on a linear scale.

We next inferred a and b from the vortexing experiment shown in Figures S1A–S1C. The key insight is that the total number of bac-

terial cells cannot change due to vortexing (although the number of detected objects does change due to vortexing disrupting

aggregates). We employed the following method to determine a and b.

For a given run of the flow cytometer consider theM objects which are detected and classified as bacteria to be indexed by i. The

side scatter signal from the ith object is then Si which contains a number of bacterial cells NðSiÞ. For sample k we denote the side

scatter signals from allM objects prior to vortexing as Si;p;k . For the same sample we refer to the side scatter for all objects after vor-

texing as Si;v;k where i now runs toM0 withM<M0. For example, the distribution of logðSi;p;kÞ is given by the purple traces in Figure S1C

and the distribution of logðSi;v;kÞ by the yellow traces.

Under the assumption that the number of cells (not objects) cannot change due to vortexing the following equality must hold:

XM
i

NðSi;p;kÞ =
XM0

i

NðSi;v;kÞ

from this we find that:

q =

PM0
i aðSi;p;kÞbPM0
i aðSi;v;kÞb

= 1

Our objective then is to determine the values for a and b such that q = 1.We now consider q(a,b,k) which shows how the ratio of the

number of inferred bacterial cells depends on a and b. A heatmap of q(a,b,1) is shown in Figure S1G with the important modification

that we plot 1/q for values of q < 1. Local minima in this heatmap near 1 reveal values of a and b where our assumptions are

satisfied. Note how the pairs of a and b along the ascending diagonal of this heatmap have qz 1. We now compute the same heat-

map for k = [1,2,3,4] and compute

X4

k = 1

qða;b; kÞ2

again taking 1/qwhen q < 1 (Figure S1H). This plot reveals a range of both a and b for which this sum is 4where our assumptions are

satisfied for all four samples in our vortex experiment. We applied the square to each element in the sum to especially penalize sam-

ples which had high q at the given a and b.

To narrow the range of parameters we apply a final criterion. Given our assumption that the lower mode of the distribution of

S comes from single cells, we know that NðS<1:41Þz1. Therefore we computed NðS = 1:41Þ as a function of a and b and the result

is shown in Figure S1I. These criteria alone do not uniquely determine a and b so we proceed by selecting a = 0.9 and b = 0.7 where

N(S = 1.41) = 1.14. This decision is subjective, but does not dramatically alter our results. For all bacterial abundances reported in the

main text we use this aggregate correction algorithm.

The success of the aggregation correction algorithm can be seen in how it eliminates a spurious drop in bacterial abundances that

was caused by aggregation. In Figure S1J, we have plotted an abundance curve for bacteria in a 1600 Lux (low light) monoculture

before and after the aggregate correction algorithm is applied. Before correction, all bacterial objects are weighted equally, meaning

that an aggregate and a single cell are both counted as a single bacterium. This equal weighting leads to a spurious fall in bacterial

abundance after reaching the initial peak. Notice how the apparent decline in bacterial abundance at day 1 corresponds in time to an

increased level of aggregation (Figure S1K). Once the bacteria eventually disaggregate, around day 5 or so, the curve returns to its

peak value. These apparent changes in bacterial density are due to aggregation and disaggregation, not an actual change in bacterial

cell concentration. Our aggregate correction formula successfully eliminates these spurious abundance changes.

The primary results of this work do not depend on the application of the aggregate correction algorithm. More specifically, invasion

outcomes and abundance dynamics in Figures 2 and 6 from the main text do not change qualitatively after application of the aggre-

gate correction algorithm (Figures S2 and S3). The only case in which there is qualitative disagreement between aggregate-

corrected B abundance and not-aggregate-corrected B abundance is the 1600 Lux (low light) tinv = 4-d invasion of bacteria

on AC as depicted in (C) of Figure 2. In the aggregate-corrected case, Figures 2C and 2B invades and rises to an abundance of

� 7 3 105mL�1. In contrast, in the not-aggregate-corrected case, B does not rise significantly above its abundance at introduction
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and only reaches� 13 105mL�1 (Figure S2C). The two possible explanations for this disagreement are (1) the B in this condition are

highly aggregated and the aggregate correction algorithm has successfully estimated the true B abundance or (2) high SSC detritus

from A and/or C has bled into the flow cytometry gate used to count B and has erroneously inflated the measure of B abundance

by � 6 3 105mL�1.

In order to test explanation (2), we applied the flow cytometry gate used to count B to 1600 Lux (low light) AC coculture data. At

almost all timepoints in this data, no detritus fell within this gate. In just two cases did any AC detritus bleed into this gate and at most,

3 3 103mL�1 B abundance (aggregate-corrected) was erroneously measured. This value is two orders of magnitude smaller than

necessary to explain the mismatch between B abundances when aggregate corrected (Figure 2C) and not aggregate-corrected

(Figure S2) and so we therefore conclude that the successful invasion depicted in Figure 2C is real.

Ciliates Cause Bacteria to Aggregate
When bacteria from a 1600 Lux (low light) B monoculture (Figure S4A) are compared to bacteria from a 1600 Lux B invasion of C

(Figure S4B), histograms of the side-scatter signal of bacteria show increased aggregation in the presence of the ciliates (Figure S4G).

Note that both histograms have a peak at low side scatter signal which corresponds to planktonic bacterial cells.

Ciliate induces aggregation in a DcsgA E. coli mutantWe attempted to test our statement more directly that ciliates prey on plank-

tonic bacteria using mutants. We constructed a DcsgA strain of E. coli (in an MG1655 background) that exhibited dramatically

reduced aggregation in liquid culture (Figure S11, (Laganenka et al. 2016)). csgA encodes a structural subunit of the curli fimbrae

which mediate cell-cell adhesion at temperatures below 37+C (our experiments were all undertaken at 30+C) (Olsén et al. 1989).

As expected, monocultures of this mutant aggregate much less than monocultures of the strain used in all other experiments (DfluD

fimA) (Figure S4L). Because of its lack of aggregation, we hypothesized that this non-aggregatingmutant would be unable to invade a

culture of ciliates. Surprisingly, we found that not only did the DcsgA bacteria invade the ciliates (Figure S4K), but they also showed

enhanced aggregation in the presence of C as compared to monoculture (Figures S4L and S4M yellow traces).

Light Level Does Not Appear to Affect Bacterial or Ciliate Abundance Dynamics
Experiments throughout the paper are performed at 1600 Lux (low light) and 4200 Lux (high light). We claim that the abundance dy-

namics of B and C are not impacted by illumination at either level of illumination. When comparing bacterial abundance dynamics

between low light and high light conditions for the co-culture experiments, B behaves identically across light levels regardless of

the species composition: B monoculture, AB co-culture, or BC co-culture (Figure S5). The only species composition in which B be-

haves differently across light levels is the ABC co-culture (Figures 6I and 6J). We argue in the main text that this effect is due to a

higher-order interaction in the community. Second, we examined the growth rates of C in low and high light conditions. We pooled

together theC growth rates in all communities (e.g. BC, AC, ABC) at the two light levels and performed aweighted linear regression on

the categorical variable of light level (low/high). Weweighted eachmeasured growth rate in the regression with 1/Error from Table S1.

We were unable to reject the null hypothesis that the average growth rate at high light is the same as at low light (constant model,

p = 0.12). We conclude that there is no evidence of a strong phototoxic or inhibitory effect on the bacteria or the ciliates at these

light levels.

We note that there is substantial variability in the C abundance dynamics. We believe that these differences reflect differences in

the state of the ciliate population prior to starting the experiment (e.g. small variations in the growth phase at the time the experiment

was initiated) since ciliate abundance dynamics are observed to be very similar between replicate populations started from the same

culture (Figure S6).

Algae-Bacteria Interactions
When Algae Are at Sufficiently High Density, They Stochastically Prevent Bacterial Invasion

Weperformed a set of invasion experiments where Bwas introduced to A at t = 0 days (co-culture), 1 day, 3 days and 4 days all in high

light (4200Lux) conditions. We found that A did not suppress B when A was at densities below 13 105mL�1 at time of bacterial intro-

duction (Figures S8A and S8B), but that suppression did occur when B was introduced to high density A (Figures S8C and S8D). Of

those six high-density A cultures which suppressed bacterial invasion, three completely prevented bacterial invasion (low bacterial

densities of �1 3 103mL�1 even after two weeks), while the other three high-density A cultures allowed bacteria to grow to high

density over the period of approximately two weeks following bacterial introduction.

Algaemust be physically present and illuminated to inhibit bacterial invasionWeperformed an experiment to test the importance of

the physical presence of algae in the suppression of bacterial invasions. A culture of algae was grown in a 1 L Erlenmeyer flask for ten

days in a shaker incubator at approximately 4000 Lux, 30+C, and 175 RPM. The algae culture was then transferred to vials and inoc-

ulated with bacteria at a density of 13 105mL�1. These vials were placed in the culture devices used for the experiments shown in the

main text. In two replicates the brightness was set to 4200 Lux (high light) (Figure S8E) while in the other two replicates the brightness

was set to 0 Lux (no light) (Figure S8F). Bacteria and algae abundance were then measured by flow cytometry.

In the other half of the experiment, the algae culture was filtered through a 0.22mm PES membrane filter before being distributed

across vials and inoculating bacteria. Once again the vials were set to 4200 Lux (Figure S8G) and 0 Lux (Figure S8H).

The only condition in which bacterial invasion was inhibited was the condition with lights on and algae physically present (Fig-

ure S8E). In all other cases: lights-off, algae filtered out, or both, bacteria invaded immediately. The necessity of light implies that

algae’s photosynthetic metabolism must be active to suppress bacterial invasion.
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The mechanism by which the physical presence of algae is necessary to inhibit invasion remains unclear. However, we present a

few possible interpretations of this result: (1) Algae suppresses bacterial invasion by secreting a toxic compound, one that they only

begin producing when they sense the presence of bacteria (microbes can be stimulated to emit toxins by presence of other microbes

(Kearns and Hunter, 2000)) (2) Algae suppresses bacterial invasion by secreting a toxic compound which can be degraded by bac-

teria. In this scenario the toxin in the spent algal medium is rapidly degraded by the bacteria, but in the case where algae are present

the production rate of the toxin exceeds the bacterial degradation rate of that toxin. This possibility motivated us to test H2O2 as the

mechanism since algae produce reactive oxygen species and bacteria degrade them via catalase. Our experiments showed that

hydrogen peroxide is not the mechanism of inhibition (see discussion below). (3) Physical contact between algae and bacteria is

necessary for the mechanism of invasion suppression (flagella have been seen to mediate interactions between microbes (Shi-

moyama et al., 2009)). (4) Algae suppresses bacterial invasion by secreting a toxic compound that is larger than the pores of the

0.22mm filter.

Additional spent media experiments further support the claim that algae must be physically present to enhance ciliate predation of

bacteria. To show this, two replicates of a 1600 Lux (low light) A monoculture were grown in the temperature/light-control systems.

Samples were harvested at multiple time points and all algae cells were removed by filtration. B along with Cwas then inoculated into

this spent media (Figure S9A) and grown to saturation in a 96-well plate where B’s density KB was assayed by flow cytometry after

two days of growth. KB did not vary with the time of spent media extraction from the algae monocultures and KB in algae spent media

was only, on average, 46% lower than for fresh media (Figure S9B).

There Exists a Threshold light Level Below which Algae Cannot Suppress Bacterial Invasion

We performed an experiment to test the importance of light in the algal suppression of bacterial invasion. A culture of algae was

grown in a flask (1 L) for ten days in a shaker incubator at approximately 4000 Lux, 30+C, and 175 rpm. The algae culture was

then transferred to vials and inoculated with bacteria at bacterial density 2 3 104mL�1. These vials were placed in the tempera-

ture/light-control systems. In sets of two replicates the brightness was set to 600 Lux (extra low light) (Figure S8I), 1600 Lux (low light)

(Figure S8J), 2900 Lux (medium light) (Figure S8K), and 4200 Lux (high light) (Figure S8L). Bacteria and algae abundance were then

measured by flow cytometry.

Algae was only able to suppress bacterial invasion at the highest light level (Figure S8L). At all other light levels the bacteria invaded

immediately. In contrast, in Figures 2H and 2J 1600 Luxmonocultures of algaewere able to suppress bacterial invasion as long as the

algae density was high enough, whereas here, for example (Figure S8J), a 1600 Luxmonoculture of high-density algaewas not able to

suppress bacterial invasion. This result implies that the physiology of algae grown in the flask in the shaker-incubator differs from

algae grown in the temperature/light-control systems and that the suppression of bacterial growth by algae depends on the growth

history of the algal culture or the culture conditions.

Hydrogen Peroxide Is Not Responsible for A Inhibiting B Invasion

Because metabolically active algae are known to produce reactive oxygen species (Roach et al., 2015), we tested if H2O2 was

responsible for algae’s ability to suppress bacterial invasion. To measure H2O2 we used the iodine based absorbance method of

(Junglee et al., 2014). Absorbance values from cultures were compared to those taken for solutions with known concentrations of

hydrogen peroxide.

In a control experiment we determined the concentration of H2O2 necessary to inhibit bacterial growth. Bacteria were inoculated

into a 96-well plate in wells that contained 1/2x Taub .01% proteose peptone No. 3 and H2O2 in concentrations that ranged from 1M

to 1 nM. We inoculated bacteria at both 1 3 104mL�1 and 1 3 105mL�1. The bacteria were grown in a plate reader at 30+C and

abundance was measured continuously via absorbance at 600 nm. For the low B inoculum, 1 mM initial H2O2 concentration was

necessary to prevent growth while for the high B inoculum 10 mM initial H2O2 concentration was necessary to prevent growth. Mea-

surements of H2O2 in these cultures one day after inoculation showed that bacteria who successfully grew eliminated the H2O2.

We then measured the H2O2 in conditions where B successfully invaded A and also conditions where its invasion was inhibited by

A. Specifically, we took H2O2measurements in the experiment from Figures S8I–S8L. NoH2O2was detected at any point in any of the

systems, and thus we conclude that H2O2 is not the mechanism by which algae suppresses bacterial invasion. We cannot rule out

other reactive oxygen species by this assay.

Algal-bacterial Adhesion and Invasion Supression

By closely examining flow cytometry data from the experiment in Figures S8I–S8L, it can be seen that bacteria are sticking to algae

(Figure S10). Recall that in this experiment algae were grown in a flask for ten days and were then distributed across vials. These vials

were inoculated with bacteria and then placed in the temperature/light-control systems at four different light levels. By looking at

flow cytometry data taken 6 hours into the experiment, one can see that some of the bacteria have stuck to algae. This is evident

from the presence of a small cloud of objects distinct from algal signals that are both high YFP and chlorophyll (Figures S10C

and S10F).

We next asked: does the degree of bacteria sticking to algae depend on the degree to which the invasion is inhibited? In the exper-

iment from Figures S8I–S8L, there were six immediately successful invasions and two suppressed invasions. We determined the

density of the population of bacteria stuck to algae. For the six systems shown in Figures S8I–S8Kwhere bacteria invade successfully

immediately, we find that the fractional abundances of bacteria stuck to algae

�
B� stuck � to� algae

B� not � stuck � to� algae

�
are: 3.7 ± 0.1%, 3.7 ±

0.1%, 2.8 ± 0.1%, 2.5 ± 0.1%, and 2.9 ± 0.1%. Error bars are estimated assuming Poisson counting error. For the two systemswhere

Cell Systems 9, 1–13.e1–e10, December 18, 2019 e6

Please cite this article in press as: Mickalide and Kuehn, Higher-Order Interaction between Species Inhibits Bacterial Invasion of a Phototroph-Predator
Microbial Community, Cell Systems (2019), https://doi.org/10.1016/j.cels.2019.11.004



the invasions were suppressed (Figure S8L), we find 4.8 ± 0.9% and 7.7 ± 1.4%. A two-sample t-test assuming unequal

variances fails to reject the null hypothesis that the average fraction of B cells stuck to A does not differ between successful and

inhibited invasions (p = 0.28). We note the small samples size means this result should not be taken too seriously. However, based

on the inconsistency between the two values in the case of the suppressed invasions, and the near-overlap between the error bars of

one of the values for suppressed invasion (4.8 ± 0.9%), and two of the values for immediately successful invasion (both 3.7 ± 0.1%),

we suggest it is not reasonable to believe that there is a substantially larger fraction of B adhered to A when B invasions are

supressed.

Physical Collisions between Bacteria and Algae Are Frequent Even when Algal Density Is Low

In the main text we conjectured that the density dependence of algal inhibition of bacteria might arise frommore frequent cell-to-cell

contact when algal densities are high. Here we estimate the frequency of this contact and find that bacteria come in contact with

algae with high frequency even at low algal densities.

We calculate the number of algae that a bacterium encounters in one second. From Seymour et al. (2017)

EB = 4pNAðDA +DBÞðrA + rBÞT where EB is the number of algae a single bacterium encounters in time T, NA is the concentration of

algae, DA and DB are the diffusivity of algae and bacteria respectively, and rA and rB are the radii of algae and bacteria respectively.

Taking T to be 1 second, wewill attempt to calculate a lower bound onEB, the number of algae a bacterium encounters in one second.

For NA, we use 500mL�1 (53 108 m�3), the starting concentration of algae, and therefore the lower bound. From Stocker, DB =
U2t

3
where U is the speed of the bacterium and t is the turning rate. We take t to be one turn per second (Hillen and Swan, 2016). In our

systems,U is not the swimming speed, but rather the speed imparted on the bacterium through stirring. The stir-bar in the vial turns at

450 rpm and is of diameter 1.5 cm. Assuming that the average bacterium will move at the same speed as the point halfway along the

radius of the stir-bar, we obtain speed 0.17 m s�1. DB is therefore .0096
m2

s
. We set DA = 0 in the interest of establishing a lower

bound. We take rB to be 1 mm and rA to be 1 mm. Taken together, we calculate EB

T to be 180 collisions per second. That is 180 algae

encountered per second by a single bacterium.

Live-dead Staining Experiments
When gating on clouds of points of flow cytometry data, an assumption is made that the cells which are fluorescent are alive and thus

a goodmeasure of true abundance of live cells. We base this assumption on the fact that algae cells fluoresce significantly differently

in chlorophyll when alive as compared to dead (Pouneva, 1997). Nevertheless, we attempt here to use Sytox Green Dye to assay the

number of dead cells. Sytox Green is a nucleic acid stain that stains dead cells positively in the YFP channel.

We performed the Sytox experiment on algae in four cases, two replicates of a day 4, 1600 Lux (low light) ABC co-culture, and two

replicates of a day 4, 4200 Lux (high light) ABC co-culture. In each case, flow cytometry data was taken before the application of

Sytox (Figure S11A), then Sytox Green was added at a concentration of 100nM, incubated for 10 minutes, and then flow cytometry

was performed again (Figure S11B). In each case, a new ‘‘dead algae’’ cloud with saturating YFP signal emerged after application of

Sytox. Across the four cases, these dead cells made up 31 ± 11% of the total algae cells, suggesting up to a third of algal cells are

dead. This estimate is likely to be an overestimate due to high stain concentrations.

Note what happens when a 5-fold higher Sytox concentration is used to stain algae (Figure S11C). The estimate of percentage of

dead cells increases from 31 ± 11% to 51 ± 21% (average and standard deviation across four replicates). This increase indicates that

we are in a regime of high Sytox concentration where even live cells are being stained with Sytox Green. Further supporting this

conclusion is the fact that the main cloud of algae points in Figures S11B and S11C is also becoming distorted toward high YFP

due to excess Sytox staining live cells.

The Sytox experiment was also performed on bacteria in four cases (but only with 500nM Sytox), two replicates of a day 14, 1600

Lux B monoculture, and two replicates of a day 14, 4200 Lux B monoculture. Once again a high YFP portion separated out from the

main cloud after application of Sytox (Figures S11D and S11E). In the case of bacteria, dead cells made up 3.6± 2.1% of the total

bacterial cells (average and standard deviation across four replicate systems). The Sytox experiment was also performed on ciliates,

but the results are impossible to interpret given that Sytox just translated the entire cloud of ciliates to a higher YFP region (Figures

S11F–S11H) and no separation is observed.

The Sytox Green staining protocol suggests performing repeated staining experiments at varying concentrations of dye and

choosing the highest concentration where a subset of the presumably live cells are not stained. Further, the ability of cells to expel

the dye depends on their physiological state (e.g. exponential versus stationary phase). Since this state varies throughout our exper-

iment we deemed it infeasible to perform Sytox staining at many time points for the many different conditions studied here. However,

the staining data we do have supports the claim for algae and bacteria that less than �31 % of the algal population or �5 % of the

bacterial population are dead. We conclude that for bacteria the bulk of the population we measure by YFP fluorescence is alive. For

the algae, while roughly 1/3 of cells may be dead this fraction is small relative to the 100-fold increase in density we observe over the

course of growth.
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Successful Bacterial Invasions Are not an Artifact of Mis-classifying Algae Detritus as Bacteria
Given that detritus accumulates over the course of experiments, we looked closer at flow cytometry data to confirm that accumu-

lating algae detritus was not being mislabeled as a successfully invading bacterial population. First we plotted YFP signal

versus SSC signal for time points at the beginning, middle, and end of a 1600 Lux (low light) algae monoculture. We then examined

the number of objects as a function of time that lay within a gate typically used to count bacteria. Over the course of this algae mono-

culture, only a small number of objects (<100) lay within this gate. The same was true for a 4200 Lux (high light) algae monoculture. In

contrast, there were approximately a thousand times asmany objects in this gate at the end of a 1600 Lux B invasion on A and a 4200

Lux B invasion on A. These results suggest that algal detritus is not a strong contributor to the number of counts of B we observe by

flow cytometry.

Modeling: Lotka-Volterra Model with Higher Order Interaction
The first model presented in Box 1 is a phenomenological model of abundance dynamics is given in Equations 1, 2 and 3. We note

that the three-species term alone cannot account for bacteria-ciliate interactions in the absence of algae, therefore we model the

predation of bacteria in the absence of algae using a competitive LV term of the form 1� xB + bxC
KB

. While unrealistic given what

we know about the system, this form is necessary since including a term �FxBxC causes the presence of ciliates in any community

to drive the bacteria extinct. This outcome is expected since the bacteria have no explicit defense against predation in thismodel. The

competitive LV term acts to lower the carrying capacity of bacteria in the presence of ciliates providing an effective description of the

fact that some bacteria can avoid predation and persist. We simulated this model and showed that it can recapitulate the dynamics

we observe experimentally (Figure S13).

Modeling: Details of Model Including Bacterial Aggregation
Box 1 also shows a model of population dynamics in the ABC community that includes bacterial aggregation dynamics. The model

captures the following experimental observations:

d Bacteria successfully invade AC communities with low algal densities

d Bacteria fail to invade AC communities when A is at high density

d Bacteria invade A and C monocultures with slower invasions of A monocultures at high A densities

d C induces B aggregation

d A inhibits B aggregation

d There is no competition for nutrients in the system that is responsible for these observations

In order to capture these features with a minimum of freely varying parameters, we constructed the model shown in Equations

4, 5, 6, 7, and 8. xB is the density of planktonic (single-celled) bacteria, while AB is the density of bacteria in aggregates. xA and xC
are the density of algae and ciliates respectively. Note that the substrate which drives bacterial growth S is assumed unitless without

loss of generality with an initial value of 1. Y then is the carrying capacity of bacteria in the medium used here (3.9 3 106mL�1). Only

planktonic bacterial cells (xB) can grow on the substrate S. We assume that aggregated bacterial cells (AB) do not grow since E. coli

biofilms are known to exhibit a physiological state similar to stationary phase (Ito et al., 2008). Note that the model makes no claim on

how many aggregates there are, nor how many bacteria make up a given aggregate; AB simply denotes how many cells of bacteria

are in an aggregated state. We then obtain the total number of bacterial cells TB = xB + AB. TB is what is plotted for bacterial abun-

dances in all figures in the main text and is the output of our aggregate correction algorithm discussed above. Below we justify the

functional forms used in this model and the parameter values we chose for numerical simulation.

The parameters of the model are described in Table S3 with their corresponding values. We are able to directly measure or use

previous work to constrain all parameters except rAB, a1 and a2. rAB must be on the same order as rB in order to observe substantial

inhibition of B growth by A so we set this parameter accordingly. a1 and a2 are inferred indirectly from the data Table S3.

Bacteria-ciliate Interactions
To begin, we ignore the algae and examine the interaction between the bacteria and the ciliates. This interaction is characterized by

five parameters: rB, Y, a1, F, rC and KC. Of these parameters, rB, Y, rC, KC and F can be inferred from data acquired for this study. For a

more detailed discussion of the estimate of F, the feeding rate, from our data, see below. This leaves a1, the rate at which the ciliates

induce B aggregation, unknown. We therefore performed simulations on a pair-culture of B and C while varying the parameter a1 in

order to see which value of a1 best reproduces the data. The results of these simulations are shown in Figure S12. The simulations

show an intuitive result. In all cases, the bacteria (TB) grow to a high density before the ciliates (xC) have grown to an appreciable

density. The aggregation rate a1 then determines how much the bacterial density crashes after that peak. If the aggregation rate

a1 is low, the bacteria fail to aggregate sufficiently quickly to avoid predation and the total bacterial density TB crashes severely.

Conversely, if a1 is set high, bacteria aggregate quickly and avoid predation and experience only a very mild fall after the abundance

peak. Typically in experiments when B is grown in coculture with C, we observe bacterial densities peaking to about 1 3 106mL�1

before dropping to about 1 3 105mL�1 (Figure 1H). Matching simulations to these values is one criteria for choosing a1. The other

criteria is as follows. In BC co-culture experiments we observe a transient spike (i.e. the peak followed by crash) in bacterial density
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while in invasion experiments of B on C the bacterial density does not exhibit a spike (e.g. Figure 2). The absence of the spike in bac-

terial abundances in invasion experiments is likely due to increased initial bacterial aggregation in invasion experiments which is itself

driven by the fact that the ciliates are at higher density at the time of bacterial introduction. Taking both criteria into account, we want

the aggregation rate a1 to be low enough that bacterial density drops to 1 3 105 mL�1 in BC co-culture simulations, but high

enough that the bacteria do not exhibit a spike in B-invasion-of-C simulations (Figure S12, panel with red borders). We take a1 =

2.5 3 10�6 mL h�1.

Predation Rates and Functional Form
Here we justify three modeling assumptions regarding the predator-prey interaction between C and B: (1) the functional response

(B loss term) is linear in bacterial densities, (2) the feeding rate is estimated to be 1310�5 mL h�1, (3) the numerical response (growth

of C due to predation on B) is negligible.

First, there is substantial evidence that the functional response of T. thermophila consuming bacterial prey is sigmoidal (e.g.

fmaxxBxC=ðU + xBÞwhere fmax andU are constants). The typical justification for this is the presence of a prey handling timewhich limits

the absolute rate at which a predator can consume a prey (Dawes andSouza, 2013).Measurements of C feeding rates as a function of

bacterial density show clear saturation at higher bacterial densities (Seto and Tazaki, 1971). The sigmoidal dependence of ciliate up-

take rates on prey concentration is further supported by studies of ciliate uptake of latex microspheres (Corno and J€urgens, 2006).

These studies give a half-velocity constant (U) for the sigmoidal prey uptake rate in the case of T. thermophila of 107 bacteria mL�1.

Further studies show limited growth of T. vorax for E. coli densities below 23 107 mL�1 (Roach et al., 2015). We conclude that for our

experiment, where bacterial densities never rise above 43 106mL�1, the functional response is well approximated by a linear model

(xB � U). We therefore use the term FxBxC to describe the impact of C on the (planktonic) bacterial densities. In this linear model,

following previous convention (Fenchel, 1980a) we refer to the feeding rate as the per ciliate uptake rate of bacteria at low bacterial

densities e.g. F = fmax=U.

Second, we claim that the feeding rate of ciliates on bacteria (F) has a value of 13 10�5mL h�1. This claim is supported again by the

literature. Fenchel estimated a feeding rate of Tetrahymena of approximately 10�5 mL h�1 (Fenchel, 1980b). Hatzis et al. measured

uptake rates in Tetrahymena of fluorescently labeled 2.74 mm diameter latex beads (at low bead concentration) and found rates be-

tween 10�5 to 10�4 mL h�1 while noting substantial population level heterogeneity in bead uptake (Hatzis et al., 1993). We note that

studies with passive particles (latex spheres) avoid possible artifacts from prey aggregation. In a follow-up study the same authors

note that the fraction of feeding ciliates declines substantially from about 80 % to 20 % as the ciliates enter stationary phase (Hatzis

et al., 1994).We neglect this time dependent feeding rate in favor ofmodel simplicity. Finally, we canmake crude estimates of this rate

from our data as well. If we neglect aggregation and algae, the dynamics of bacteria are given by _xB=xB = ðrB � FxCÞ. We measure

rB = 0.3 h�1. We note that the growing bacteria are limited in their maximum density due to predation, at the crossover point (when

predation and growth are balanced) rB = FxC, or F = rB=xC. If we assume that this crossover point occurs when xC� 13 104mL�1 (and

before bacteria have consumed all substrate) this gives an estimate of F z 3 3 10�5 mL h�1, in good agreement with previous es-

timates. Due to the dependence of C feeding rates on growth state of the population and particle sizes, both of which are changing in

our experiment as C enters stationary phase and B aggregates, we fixed the feeding rate on the lower end of the reported range: 13

10�5 mL h�1. Note that this feeding rate only applies to planktonic bacteria, xB. In order to replicate the inability of ciliates to eat ag-

gregates of bacteria, there is no feeding of ciliates on aggregating bacteria AB in the model.

Third, we claim that the numerical response of the predator in response to predation is negligible and we therefore make

C abundance dynamics independent of xB (Equations 3 and 7). The results of Seto and Tazaki (Seto and Tazaki, 1971) show no

growth of T. vorax on E. coli when the abundance of the latter is below 2 3 107mL�1. In fact, these authors estimate a ciliate yield

of 43 104 bacteria/ciliate (e.g. one ciliate is produced from the consumption of 43 104 bacterial cells). Further, Curds and Cockburn

(Curds and Cockburn, 1968) measure the dry weight of T. pyriformis to be 1.3 3 10�10 g cell�1 and the yield on bacteria (Klebsiella

aerogenes) to be 50%by dry weight. If we take the dry weight of E. coli to be 280 fg (bionumbers.hms.harvard.edu, BNID: 103904) we

estimate approximately 13 103 bacteria/ciliate. Therefore, we expect the yield of C on B to be between 13 103 to 43 104 bacteria/

ciliate. Our data show that C predation reduces bacterial abundances from approximately 13 106 to 13 105 mL�1 (Figure 1H, main

text). Based on this reduction in B density, and the range of yields, we expect predation to produce between 50 and 1000 ciliates.

Given the carrying capacity of C on this medium is 1.23 104 mL�1 we conclude that the numerical response generates at most 10%

of the maximum C population. Finally, when we compare abundance dynamics of C in the presence and absence of B we see no

significant difference (Figures S9E and S9G).

Algae-Bacteria Interactions
Modeling AB interactions and dynamics requires two assumptions: (1) A growth rate depends only on light level and composition of

the community, (2) A inhibits growth of B but not carrying capacity.

First, Table S1 showsmeasured growth rates of A as a function of light level and community composition. At low light, algal growth

rate decreases substantially with the addition of B and/or C. At high light, to within the precision of our measurement, A growth rate

does not depend on community composition. Rather than construct a functional form with its own parameters that relates algal

growth rate to light and community composition, we simply set the algal growth rate for each combination of light level and commu-

nity composition. Since the dynamics of B are the focus of our study, and A dynamics are always well described by a logistic model,

this modeling choice is well justified and removes unnecessary parameters from our model.
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Second, as shown in Equation 4, we assume that A impacts the growth rate of B in a density dependent fashion (rBS� rABxA= KA),

but also that A has no impact on the carrying capacity of B. Our data support this assumption since we see no impact of the presence

of A on the carrying capacity of B. In the situation where B invades a high density (>1 3 105 mL�1) algae culture, we find that the

bacterial growth is strongly inhibited in about half of the cases we observed. We therefore capture this growth inhibition using the

term shown above.We note that this purely deterministic model will not capture the stochastic outcomeswe observe experimentally.

We set rAB to be on the same order as rB. Wemake this assumption since our data clearly show that A is capable of nearly completely,

or completely, inhibiting the growth of B (e.g. when xA = KA near-complete inhibition will occur if rAB z rB).

Third, we must specify the unknown parameter a2. To infer this parameter we make the following note about the model. If we

assume, as is true late in the experiment, that the time derivatives are approximately zero then _AB = 0 andwe find a2 =
a1xBxC
ABxA

. Exam-

ining the time series in Figure 2Fwe note that abundances are stable afterz10 d.We compute a2 via the fraction given above and the

inferred value of a1 and find a median value across all data points taken after 10 d to be a2 = 7.73 10�8mL h�1. Note that to accom-

plish this we measure AB using the clump correction algorithm described above. In all simulations shown in the main text we use this

value. As a result our model has no free parameters.

Code for simulations of both models is available at: https://doi.org/10.13012/B2IDB-0946028_V1.

Aspects of the Dynamics Not Captured by the Model Including Bacterial Aggregation
Themodel presented here is necessarily simplified to limit the number of parameters. As a result there are several qualitative aspects

of the data that are not captured by the modeling framework. Here we enumerate these.

d B exhibits a transient spike in aggregation as it enters stationary phase even in the absence of A or C. (e.g. Figure S1K). This

process has been examined previously in our group and explained using a substrate dependent aggregation process (Merritt

and Kuehn, 2016). We neglect this aspect of the bacterial aggregation dynamics.

d In co-culture conditions with B in the presence of C, after the peak in bacterial abundance and then subsequent fall due to pre-

dation, the abundances of B rise over the last �10 days of the experiment. (Figure 6H). This rise could be explained by slow

growth of aggregated bacteria or by growth of B on the detritus of dying C. Our model fails to capture the rise and we have

not included it since we have no direct evidence for either of these processes.

d The deterministic ODE framework does not capture the stochasticity we observe in the outcome of B invading A alone (e.g.

Figures S8C and S8D). This stochasticity could be captured by an effective randomness in the parameter rAB. We have not

included it here since the process is likely driven by population structure in either A or Bwhich is not present in the currentmodel

(e.g. phenotypic heterogeneity in the response of B to inhibition by A). In the absence of direct mechanistic insight into this sto-

chasticity process, we omitted it from our model.

d The decline in C abundances after approximately 4 days is not modeled here. This decline could be addressed by inferring a

death rate from the data, but it would not qualitatively impact the agreement between the model and the simulation.

Simulations
Numerical integration of the model was performed using custom written Matlab scripts. Time steps of 1 minute were used to ensure

numerical stability and accuracy. Organisms that fell below a density of 1 mL�1 were assumed extinct and could not recover. Inva-

sions were accomplished by instantaneously adding a fixed density of B at tinv.

QUANTIFICATION AND STATISTICAL ANALYSIS

Error Bars on Abundance Measurements by Flow Cytometry
Error bars on abundances are calculated by performing propagation of two forms of error: (1) the Poisson error inherent in counting a

finite number of cells and (2) the uncertainty in volume run through the flow cytometer. The uncertainty in flow rate is taken as the

standard deviation across the three replicates of bead calibration on the day the abundance was measured.

DATA AND CODE AVAILABILITY

Code for simulations and abundances measured by flow cytometry are available at: https://doi.org/10.13012/B2IDB-0946028_V1.
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TABLE S1: Growth rates of A and C at 1600 Lux and 4200 Lux. Related to Figures 1 and 2.

Growth rate of A at 1600 Lux
Species Composition Replicate Growth R. [day−1] Error Mean Growth R. [day−1] Error
A 1 1.13 0.13 1.08 0.07

2 1.11 0.40
3 1.00 0.21

AB 1 0.56 0.06 0.74 0.26
2 0.93 0.11

AC 1 0.71 0.04 0.61 0.10
2 0.53 0.03
3 0.70 0.14
4 0.52 0.07

ABC 1 0.44 0.06 0.39 0.07
2 0.34 0.06

Growth rate of A at 4200 Lux
Species Composition Replicate Growth R. [day−1] Error Mean Growth R. [day−1] Error
A 1 1.92 0.91 1.76 0.19

2 2.08 0.28
AB 1 1.67 0.91

2 1.70 0.99
AC 1 1.83 0.20

2 1.73 0.38
ABC 1 1.65 0.83

2 1.47 0.87

Growth rate of C at 1600 Lux
Species Composition Replicate Growth R. [day−1] Error Mean Growth R. [day−1] Error
C 1 2.28 1.73 2.01 0.59

2 2.48 9.92
AC 1 1.01 0.25

2 2.34 12.72
3 3.04 0.51
4 1.71 1.42

BC 1 2.01 3.89
2 2.22 3.42

ABC 1 1.47 1.31
2 1.53 0.44

Growth rate of C at 4200 Lux
Species Composition Replicate Growth R. [day−1] Error Mean Growth R. [day−1] Error
C 1 1.54 2.18 1.43 0.39

2 1.15 3.71
AC 1 0.87 0.49

2 1.00 0.48
BC 1 1.95 3.70

2 1.72 1.89
ABC 1 1.39 1.56

2 1.80 3.07



FIG. S1: Vortex experiments shows high SSC objects are bacterial aggregates and aggregate correction al-
gorithm corrects for aggregates. Related to STAR Methods. a, Yellow fluorescence signal (YFP) plotted versus
side-scatter signal (SSC) for flow cytometry data from day 12 of a 1600 Lux BC coculture (Samples 1 and 2) and a 1600 Lux
ABC coculture (Samples 3 and 4). Points colored purple are classified as bacterial objects. The number reported in the plot
indicates abundance of bacterial objects. b, Flow cytometry data from those same samples, but after vortexing. Points colored
yellow are classified as bacterial objects. In all cases the abundance of objects classified as bacteria increases after vortexing. c,
Overlays of histograms of side-scatter signal of bacterial objects from before and after vortexing. d, YFP plotted versus SSC
for flow cytometry data for sample 1 prior to vortexing. Red points indicate objects we have labeled bacteria. The black line
indicates the threshold between single cells and aggregates at t = 300. e, Histogram of log(Si,p,1) signal for bacteria with the
threshold indicated by the line. f, Plotting Si,p,1 vs log(Si,p,1) (red) with the fitted curve (black). The threshold is indicated by
the black labeled point. g, A heat map of q(α, β, 1) where we have plotted 1/q when q < 1. h, A heatmap of

∑4
k=1 q(α, β, k)2

where again we take 1/q for values of α and β where q < 1. i, N(S = 1.41) as a function of α and β (recall t = 1.41). j,
Abundance dynamics for a 1600 Lux (low light) B monoculture before (black) and after (red) aggregate correction. k, Mean
SSC (aggregation) plotted versus time for that same 1600 Lux B monoculture



FIG. S2: Figure 2 from the main text but without the aggregate correction algorithm applied Panels are identical
to Figure 2.



FIG. S3: Figure 6 from the main text but without the aggregate correction algorithm applied Panels are identical
to Figure 6 of the main text.

Co-culture
Light Level Low Low High High
A 7.06,6.85 7.13 6.04 6.46
B
C 7.4 7.52 7.45 7.52
AB 7.16
AC 7.72,8.6 8.45,8.67 8.31 8.28
BC 7.55 7.64 7.51 7.46
ABC 8.84 8.92 8.69 8.68
Day 14 B Invasion
A 6.08 6.15 6.66 6.83
C 7.68
AC 8.32 8.17 7.04 7.07
Day 10 B Invasion
AC 6.65 8.02
Day 4 B Invasion
A 6.76 6.87 6.67 6.44
C 7.51 7.56 7.52 7.54
AC 8.44 8.17 6.52 6.76

TABLE S2: Measurements of pH at the end of co-culture and invasion experiments. Related to Figure 1, 2 and
6. Values correspond to pH measurements at the end of the respective time series shown in Figure 1, 2 or 6 of the main text.
Omitted values are experiments where pH was not measured at the end. For invasion experiments numbers in red indicate
failed B invasions as defined in the main text and green indicates successful invasions. The 10 day B invasion of AC time series
is not shown in the main text but is included for completeness.



FIG. S4: Ciliates induce bacteria to aggregate. Related to Figure 5. a, Abundance dynamics for a 1600 Lux (low light)
monoculture of B. Black line indicates the time point for which we plot flow cytometry data in c. b, Abundance dynamics
for a 1600 Lux (low light) B invasion of C. The black line indicates the time point for which we plot flow cytometry data in
d. c,d Plotting yellow fluorescence (YFP) versus side-scatter (SSC) for flow cytometry data taken from the indicated day in
a and b respectively. Red-colored points indicate objects we have labeled as bacteria. e,f, Histograms of the SSC signal for all
objects labeled as bacteria in c or d. g, Overlay of the histograms. All experiments in the following panels are at 4200 Lux
(high light). h, Abundance dynamics for two replicates of a B monoculture, using strain ∆flu∆fimA. This is the strain used
throughout this study. i, Abundance dynamics for two replicates of a B invasion on C, also using the ∆flu∆fimA strain of B.
j, Abundance dynamics for two replicates of a B monoculture, using strain ∆csgA. k, Abundance dynamics for two replicates
of a B invasion on C, also using the ∆csgA strain of B. l, Mean side-scatter plotted versus time for the bacteria in panels h
and j. m, Mean side-scatter plotted versus time for the bacteria in panels i and k.



FIG. S5: Bacterial or ciliate abundance dynamics with different light levels and community composition. Related
to Figure 2. a-d, Abundance dynamics for two replicates each of B in 1600 Lux and in 4200 Lux B monoculture (a), AB
co-culture (b), BC co-culture (c), and ABC culture (d). Legend in a applies to b-d. e-h, Abundance dynamics for two
replicates each of C in 1600 Lux and in 4200 Lux C monoculture (e), AC co-culture (f), BC co-culture (g), and ABC co-culture
(h). Legend in e applies to f-h.

TABLE S3: Model parameter values. Related to Figures 2 and 6.

Parameter Value Source
rB 0.3 h−1 This study
rAB 0.29 h−1 Inferred
rC 0.073 h−1 This study

rA (high light) 0.073 h−1 Table S1
rA (low light, w/BC) 0.016 h−1 Table S1
rA (low light, w/C) 0.025 h−1 Table S1
rA (low light, w/B) 0.031 h−1 Table S1
rA (low light, alone) 0.045 h−1 Table S1

KA 2.3 × 105mL−1 This study
KC 1.2 × 104mL−1 This study
Y 3.9 × 106mL−1 This study
F 1 × 10−5 mL h−1 [28][39][40], Inferred
α1 2.5 × 10−6 mL h−1 This study
α2 7.7 × 10−8 mL h−1 This study



[h!]

FIG. S6: Culture history is a strong determinant of C abundance dynamics. Related to Figure 2.. A collection
of abundance dynamics measurements for C across light levels and community composition. Each row of panels shows data
for communities containing C which originated from the same pre-culture. Colors indicate species (A, green; B, red; C, blue).
Light levels are given in the title of each panel. Note the similarity of C abundance dynamics for populations derived from the
same culture (row).
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FIG. S7: Spectrum of the light LED light sources used in this study. Related to STAR Methods. We used XP-L2
Cree LEDs with a color temperature of 4000K. The spectrum for these LEDs was not available, but the Cree XM series LEDs
use the same die and are therefore expected to have the same spectrum. We digitized he neutral white spectrum from the Cree
datasheet for the XM series LEDs and the result is shown in this plot. For the relevant datasheet see: https://www.cree.com/led-
components/media/documents/XLampXML2.pdf green curve page 5. We did not measure the spectra of our LEDs directly.



FIG. S8: Experiments aimed at understanding algae-bacteria interactions. Related to Figures 3 and 4. a-d,
Abundance dynamics of algae and bacteria when bacteria is grown in co-culture with algae (a), or introduced into an algae
monoculture at day 1 (b), day 3 (c), or day 4 (d). Text inside panels indicates density of algae at time of introduction of
bacteria. All experiments in (a-d) performed at 4200 Lux (high light). e-h, Algae are grown for 10 days in large volume in a
flask of 1/2xTaub .01%pp3 at 30 ◦C in a shaker-incubator while being illuminated at approximately 4000 Lux. Half the culture
is filtered. Then unfiltered (e,f) and filtered (g,h) algae culture is distributed across vials. Bacteria is inoculated at density
1 × 105 mL−1 and the vials are then grown at 4200 Lux (high light) (e,g) or 0 Lux (no light) (f,h). Abundance dynamics
after inoculation with bacteria are plotted. There are two replicates for each condition. i-l, Algae are grown for 10 days in
large volume in a flask of 1/2xTaub .01% proteose peptone No.3 at 30 ◦C in a shaker incubator while being illuminated at
approximately 4000 Lux. Algae culture is then distributed across vials. Bacteria is inoculated at density 2 × 104 mL−1 and the
vials are then grown at 600 Lux (extra low light) (i), 1600 Lux (low light) (j), 2900 Lux (medium light) (k), or 4200 Lux (high
light) (l). Abundance dynamics after inoculation with bacteria are plotted. There are two replicates for each condition.



FIG. S9: Additional spent media experiments. Related to Figure 3. a Abundance plotted versus time for two replicates
of an algae monoculture at 1600 Lux (low light). Black arrows indicate the time points at which media is extracted and filtered.
Bacteria and ciliates are then grown together on this spent media in a microtiter plate, allowing B to reach saturating density
KB . b KB , measured by flow cytometry, is plotted versus time of spent media extraction from experiment in panel (a). The
fact that B reaches high density in the presence of C even in algal spent medium suggests that algae must be present to enhance
ciliate predation rates on B.



FIG. S10: A small fraction of bacteria adhere to algae. Related to Figure 2-4. a, Abundance curves for algae and
bacteria taken from one of the 600 Lux replicates of the algae flask experiment in Fig. S8. The black line marks the time
point for which flow cytometry data is plotted in b&c. b, YFP signal plotted versus SSC signal for flow cytometry data from
aforementioned timepoint. Points in red mark objects classified as bacteria. Number indicates the number of these objects. c,
YFP signal plotted versus Chlorophyll signal for flow cytometry data from that same timepoint. Points in gold mark objects
classified as algae with bacteria stuck to them. Number indicates the number of these objects. Percentage indicates how many
of these algae-stuck-to-bacteria objects there are as a fraction of the normal bacteria. d,e&f, The same analysis as in the top
row of this figure, but instead with one of the 4200 Lux replicates from Fig. S8.



FIG. S11: Live-dead staining of algae, bacteria, and ciliates. Related to Figure 1. a, YFP signal plotted versus
Chlorophyll signal for flow cytometry data taken from day 4 of a 4200 Lux ABC coculture. The cloud labeled A is known to
be algae b, YFP signal plotted versus Chlorophyll signal for that same sample but after the application of 100 nM Sytox. At
sufficiently low concentration, Sytox selectively increases the YFP signal of dead cells. Note how a cloud with saturating YFP
signal, thought to be dead algae AD, has separated from the main cloud of live algae AL. Numbers indicate fraction of counts
within corresponding white rectangle divided by total counts across both white rectangles. c, Same sample and analysis as
panel b except in this case 500 nM Sytox has been used. Note how the additional Sytox significantly changes the ratio between
live and dead cells. d,e A similar analysis is performed on bacteria by plotting YFP signal versus SSC signal. In this case, the
sample is taken from day 14 of a 4200 Lux B monoculture and in panel (e) 500 nM Sytox is used. There is no data for 100nM
Sytox on bacteria. f-h, A similar analysis is performed on ciliates. In this case, the sample is taken from day 4 of a 1600 Lux C
monoculture. Unstained cells are shown in (f) and cells stained with 100 and 500 nM Sytox in panels (g) and (h) respectively.
Note how at both Sytox concentrations, the entire ciliate cloud shifts in YFP rather than separating out into high YFP and
low YFP clouds, thus making quantification of dead cells impossible.



FIG. S12: Determining α1. Related to Figure 2,6. In each panel xC in blue, TB in red, and AB in black. Abundance
dynamics of B and C in co-culture simulated using the model discussed above. Parameter values are as shown in Table S3
with the exception of α1 which is varied as indicated in the title of each panel (units are mL h−1). The bottom right panel
shows abundance dynamics of B and C in invasion rather than co-culture. The red line and black line overlap at long times
(TB = AB) because the ciliates eventually induce all bacteria to aggregate.

FIG. S13: Phenomenological model with higher order interaction. Related to Figures 2 and 6. Simulations of
Lotka-Volterra model (see Box 1 main text). Parameters are identical to Table S3 with the following additions: β = 60, rABC =
0.025 h−1 , KAC = KAKC . Light levels for the first four rows are shown at the right and for the last four panels on each panel.
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