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Environmentally dependent interactions 
shape patterns in gene content across 
natural microbiomes

Kyle Crocker    1,2,3, Kiseok Keith Lee    1,2,3, Milena Chakraverti-Wuerthwein    2,3,4, 
Zeqian Li    1,2,5, Mikhail Tikhonov    6, Madhav Mani7,8,9,10, Karna Gowda    11,12  & 
Seppe Kuehn    1,2,3,10 

Sequencing surveys of microbial communities in hosts, oceans and soils 
have revealed ubiquitous patterns linking community composition to 
environmental conditions. While metabolic capabilities restrict the 
environments suitable for growth, the influence of ecological interactions 
on patterns observed in natural microbiomes remains uncertain. Here we 
use denitrification as a model system to demonstrate how metagenomic 
patterns in soil microbiomes can emerge from pH-dependent interactions. 
In an analysis of a global soil sequencing survey, we find that the abundances 
of two genotypes trade off with pH; nar gene abundances increase while 
nap abundances decrease with declining pH. We then show that in acidic 
conditions strains possessing nar fail to grow in isolation but are enriched 
in the community due to an ecological interaction with nap genotypes. 
Our study provides a road map for dissecting how associations between 
environmental variables and gene abundances arise from environmentally 
modulated community interactions.

Natural microbiomes drive the global cycling of carbon, nitrogen and 
other elements essential to life on Earth1. This activity arises from the 
collective action of metabolic pathways carried by diverse, interacting 
microbes in dynamic communities. Despite this complexity, global 
sequencing surveys of natural communities have revealed ubiquitous 
patterns relating the abundance of the genes that make up these path-
ways to local environmental variables in marine systems2, soils3–5 and 
human hosts6–8. Uncovering the origins of environmentally mediated 
variation in microbiome gene content is a necessity to understand how 
human activity impacts global nutrient cycles.

Conventional wisdom for the distribution of microbes is that ‘eve-
rything is everywhere but the environment selects’9—but how does the 
environment select? One view is that microbes occupy environmental 
niches that are a function of their metabolic capabilities and traits. 
For example, the relative abundance of acid-tolerant Acidobacteria 
in soil increases as the pH declines10–12. In such cases, we presume 
that specific metabolic strategies are enriched in niches where those 
strategies facilitate an individual competitive advantage. However, 
we also know that microbial communities are complex systems with 
numerous interactions between constituents13–16, resulting in feedback, 
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50-fold across soil samples. While pathway composition also varies 
from sample to sample, this variation is challenging to visually distin-
guish from variation in pathway magnitude.

To disentangle pathway magnitude from composition, we devel-
oped a new approach based on unit-invariant singular value decom-
position (uiSVD32; Methods). We used this approach to decompose the 
relative abundances of denitrification genes in each sample ( ⃗x i) into a 
contribution arising from the magnitude of the pathway (di) and the 
pathway composition ( ⃗c i) (Fig. 1d). We note that it was not necessary 
to transform the data to account for compositionality, as the high 
diversity of the gene abundance dataset makes the effects of compo-
sitionality negligible (Supplementary Text Section 1).

pH correlates with pathway composition on a global scale
To assess how environmental variation impacts the prevalence of  
denitrification reductases, we computed the principal components 
(PCs) of the composition matrix (Methods and Extended Data Fig. 1), 
which represent covarying groups of genes. Correlations between PC 
scores (projections of composition onto the PCs) with the environ-
mental variables show that a single component of variation, PC2 (21.7% 
variance explained), was associated with pH much more strongly than 
any other combination of components and environmental variables 
(ρ = 0.64, P < 10−6 via one-tailed randomization test; Fig. 1e,g). The 
loadings of each reductase in PC2 (Fig. 1h) reveal how denitrification 
reductase genes vary with pH on a global scale: some reductase genes 
are enriched as pH decreases (narG, nirS, norB), while others decline 
(napA, nirK, nosZ). While pH is widely appreciated as a strong contri-
butor to community diversity in soils33 and is known to be important 
for denitrification34,35, our analysis provides a granular view into how 
pH impacts the composition of the denitrification pathway across 
environments.

In contrast to the composition ( ⃗c i), pathway magnitude (di) was 
most strongly associated with C/N ratio (ρ2 = 0.35; Fig. 1f). The correla-
tion is negative (ρ = −0.59, P < 10−6 via one-tailed randomization test; 
Extended Data Fig. 2), consistent with previous work showing that  
the prevalence of denitrification is enhanced at low C/N ratios36. The 
fact that pathway magnitude and composition are strongly associated 
with distinct environmental factors highlights the need to disentangle 
these two components to assess the drivers of their variation.

Enrichment cultures reproduce topsoil microbiome patterns
If pH is causally related to patterns of denitrification gene abundances 
in the global topsoil microbiome (Fig. 1e,g,h), we reasoned that enrich-
ment cultures with different pH conditions should reproduce these 
patterns. We extracted microbial communities from six soil samples 
(Supplementary Table 1) and inoculated them into chemically defined 
media buffered at pH 6.0 and pH 7.3. We then passaged these communi-
ties serially for 12 growth cycles under anaerobic conditions for 72 h 
each, with eightfold dilutions between cycles, supplying 1.75 mM nitrate 
at the beginning of each cycle (Fig. 2a and Methods). We chose these 
conditions because pH in soils is often strongly buffered37–39; millimolar 
concentrations of nitrate are often present40,41, and the growth medium 
was designed to capture a diverse range of denitrifiers29. The resulting 
enrichments were then sequenced via shotgun metagenomics to assay 
taxonomic and functional composition (Methods).

End-point enrichments were dominated by the orders Pseudomo-
nadales and Rhizobiales, with the former comprising the majority of 
all enrichments at pH 6.0 and the latter making up the majority of five 
out of six enrichments at pH 7.3 (Fig. 2b). Because the starting points 
of enrichments for both pH conditions were the same, this result sug-
gests that pH 6.0 selects for Pseudomonadales strains, while pH 7.3 
selects for Rhizobiales strains. Taxa from the orders Burkholderiales 
and Enterobacteriales were present at comparably lower levels, and no 
other taxonomic orders were present at a relative abundance greater 
than 1%.

counter-intuitive inhibitory effects, coevolution and predation, all of 
which conspire to determine abundances17–21. Thus, environmental 
factors should in principle modulate interactions and drive impacts 
on community diversity, gene content and metabolic activity.

From this vantage, a problem arises: how can simple patterns in 
environmentally mediated gene content emerge given the apparent 
complexity of community interactions? One possibility is that inter-
actions are weak, and changes in gene content reflect an adaptation 
of individual genotypes to local environmental conditions. A second 
possibility is that the patterns in gene content emerge from ecological 
interactions whose strength and specificity are modulated by local 
environmental variables. In this case, the emergence of reproducible 
patterns requires that the interactions show regularity across differ-
ent locations with similar environmental conditions. However, given 
the complexity of interactions in microbiomes, imagining how this 
regularity could manifest is a challenge.

In this Article, we present evidence that patterns in the metagen-
omic content of microbial communities can emerge from environmen-
tally dependent interactions between members of the community. 
Using bacterial denitrification as a model process, we find that soil 
pH strongly associates with variation in denitrification reductase 
gene content across the global topsoil microbiome4. Through enrich-
ments and quantitative phenotyping of isolates, we then demonstrate 
how pH shapes ecological interactions and patterns in denitrification 
gene abundances. We argue that these interactions yield reproducible 
metagenome–environment associations as a result of the conserved 
phenotypic properties of the genotypes involved and the interac-
tions these physiological traits support. Our study provides a unified 
approach for uncovering how ubiquitous patterns in microbiomes 
can emerge from environmentally modulated interactions between 
members of the community.

Results
Quantifying patterns in topsoil denitrification gene content
We first sought to quantify metabolic gene content variation across 
environments, focusing on the widespread process of denitrification 
in soils22. Denitrification involves the anaerobic respiration of oxidized 
nitrogen compounds through a cascade of reduction reactions (Fig. 1a). 
Denitrification is essential to global nitrogen cycling23, representing 
the primary sink of bioavailable nitrogen from the biosphere. This 
process also influences human health through activity in wastewater 
treatment24 and the human gut25. The fact that denitrification arises 
from enzymes that are well studied and reliably annotated26,27 and is 
performed by diverse, culturable taxa28–31 enabled us to readily identify 
genomic patterns in gene content from sequencing data and dissect 
interactions using wild isolates.

To study denitrification gene content in soils, we utilized the sur-
vey by Bahram et al.4 of the global topsoil microbiome. The dataset 
comprises n = 189 samples taken from sites across the planet (Fig. 1a; 
ref. 4). Crucially, this dataset combines shotgun metagenomics with 
a detailed characterization of the physicochemical properties of each 
soil sample, including pH, ion concentrations, nutrient levels and site 
climate characteristics (Methods). The fact that these measurements 
were performed in a standardized fashion on soils from across the globe 
enabled us to reliably relate environmental factors to the abundances 
of denitrification genes.

First, we computed the relative abundance of the six main reduc-
tases in the denitrification pathway (narG, napA, nirS, nirK, norB and 
nosZ; Fig. 1b). Note that, due to the sequencing depth of the dataset, 
we were not able to construct reliable metagenome-assembled 
genomes (MAGs), so the genomic context of these genes is not known. 
We refer to the total prevalence denitrification reductases in a given 
sample as the ‘magnitude’ (d) of the pathway and the relative contribu-
tion of each reductase to the total as the ‘composition’ ( ⃗c ; Fig. 1c). We 
observed that denitrification pathway magnitude varies by about 
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Fig. 1 | pH is associated with covariation in denitrification pathway composition 
in the global topsoil microbiome. a, Topsoils sampled at n = 189 globally 
distributed sites were chemically characterized (pH, Ca, Mg, …), sequenced via 
shotgun metagenomics and functionally annotated by Bahram et al.4. b, The 
relative abundance of denitrification reductases in each soil sample (relative to 
total gene content) are plotted in order of increasing total relative abundance. 
Reductase colour legend indicated in a. c, uiSVD32 was used to decompose the 
data in b into contributions due to pathway magnitude (di) and pathway 
composition ( c⃗ i). d, The results of the decomposition in c are plotted in d. e,f, PC 
scores for pathway composition (e) and pathway magnitudes (f) obtained via 

uiSVD (Methods) are compared with 17 environmental variables, and squared 
Pearson correlation coefficients are shown. MAP, mean annual precipitation; 
MAT, mean annual temperature; NPP, net primary productivity; PET, potential 
evapotranspiration. g, Scores of PC2 are most correlated with pH (ρ = 0.64, 
P < 10−6 via one-tailed randomization test), while pathway magnitude is most 
correlated with C/N ratio (ρ = −0.59, P < 10−6 via one-tailed randomization test; 
Extended Data Fig. 2). h, Loadings of PC2 are shown, where positive values 
indicate reductase content that increases with pH, and vice versa. See also 
Extended Data Figs. 1 and 2.
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MAGs42 revealed that taxa from different enrichments had  
largely similar denitrification genotypes (Fig. 2c); Pseudomon-
adales MAGs typically encoded the reductases NarG and NirS, while  
Rhizobiales MAGs encoded the NapA and NirK reductases. A second 
experiment performed with seven soil samples enriched across a 
broader range of pH values also reproduced the same basic pattern in 
genotype abundances, with taxa possessing NarG heavily enriched at 
pH 5.0 and pH 5.5 (Extended Data Fig. 3 and Methods).

Strikingly, these enrichments reproduce the patterns in denitri-
fication gene content observed in the topsoil microbiome (Fig. 1h); 
namely, we observed a greater prevalence of narG and nirS at acidic 
pH (Pseudomonadales in Fig. 2b,c), and alternatively a greater preva-
lence of napA and nirK at neutral pH (Rhizobiales in Fig. 2b,c). This 

agreement between the enrichment and the global topsoil microbiome 
suggests that the mechanisms shaping these patterns in soils are also at  
play in vitro.

Individual traits do not explain acidic enrichment outcomes
To uncover the mechanisms that give rise to selection for specific geno-
types in our enrichment experiments (Fig. 2c), we isolated taxa from the 
enrichment end point from the genera Pseudomonas (narG/nirS) and 
Rhizobium (napA/nirK) (Fig. 2d and Methods). We denote the taxonomy 
and genotype of these isolates as PD Nar+ and RH Nap+. The simplest 
interpretation for the dominance of these strains is that the Nar+ strain is 
better adapted than the Nap+ strain to acidic conditions, and vice versa 
in neutral conditions. To test this hypothesis, we performed a serial 
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Fig. 2 | Enrichment cultures reproduce patterns in denitrification gene 
content in the topsoil microbiome. a, Denitrifying communities were enriched 
from soil samples in two pH conditions (pH 6.0 and pH 7.3) and then sequenced 
via shotgun metagenomics to measure taxonomic composition and genotypes. 
Six soil samples were mechanically homogenized and used to inoculate a serial 
dilution experiment in denitrifying (anaerobic) conditions. After 72 h growth 
cycles, cultures were repeatedly passaged (12 times) into a defined medium 
containing 1.75 mM nitrate via a 1/8 dilution factor (Methods). b, End-point 
community compositions are shown at the level of taxonomic order for 
enrichments in pH 6.0 and pH 7.3. Compositions were determined by extracting 
16S rRNA fragments (miTAGs) from shotgun metagenome data72 and then 

taxonomically annotating miTAGs via RDP75. Taxa present at a relative abundance 
less than 1% are omitted. c, Median denitrification reductase genotypes are 
shown for MAGs corresponding to the four most abundant taxa present in the 
composition data in b. MAGs were functionally annotated using RAST81, and 
the median genotype was computed over MAGs obtained in different samples. 
d, Strains were isolated from cryopreserved samples from the enrichment end 
point (Methods). The strain Pseudomonas sp. PD Nar+ represents the dominant 
taxa present across samples at pH 6.0, and Rhizobiales sp. RH Nap+ represents 
the dominant taxa across samples at pH 7.3. See also Supplementary Fig. 6 and 
Extended Data Fig. 3.
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dilution experiment with isolates cultured axenically under anaerobic 
conditions (Methods). We measured the dynamics of nitrate, nitrite 
and total biomass at the end of each cycle (Fig. 3).

Indeed, the isolate RH Nap+, representative of taxa most abun-
dant in pH 7.3 enrichments, appeared better adapted for pH 7.3 than 
PD Nar+. RH Nap+ produced more biomass in the final cycle at pH 7.3 
(Fig. 3c) and accumulated less nitrite in the first cycle (Fig. 3g), despite 
reducing nitrate more quickly (Fig. 3e). In addition, simulated com-
petition using a consumer-resource model previously developed  
for denitrification31 confirmed the fitness of RH Nap+ over PD Nar+ at  
pH 7.3 based on monoculture phenotypes (Supplementary Text  
Section 2.1 and Extended Data Fig. 4).

By contrast, at pH 6.0 PD Nar+ produced only a small amount of 
biomass, with levels decreasing with each cycle (Fig. 3b). This strain also 
reduced nitrate more slowly than RH Nap+ in cycles 2–4 and reduced 
nitrite more slowly in all cycles (Fig. 3d,f). Moreover, PD Nar+ transiently 
accumulated nitrite, with accumulation increasing over successive 
cycles (Fig. 3f).

These experiments reveal a paradox at pH 6.0: PD Nar+ dominated 
in a community context (Fig. 2b) and yet performed poorly by itself. 

This result suggested that the dominance of Nar+ genotypes in acidic 
enrichment experiments was not simply a consequence of individual 
traits and instead emerged from community-level processes.

Nitrite toxicity impacts acidic pH denitrification activity
To determine how community-level processes account for the discrep-
ancy between enrichments (Fig. 2) and monocultures (Fig. 3) at pH 
6.0, we investigated mechanisms underlying the poor performance 
of PD Nar+. Given previous literature indicating the toxicity of nitrite 
under acidic conditions43–45, we hypothesized that nitrite accumulation 
(Fig. 3f) inhibited the growth of PD Nar+ at pH 6.0.

We first tested whether nitrite inhibited either isolate at pH 6.0. 
To do this, we initiated monocultures of each strain with 1.75 mM nitrate 
and varying concentrations of nitrite and then measured nitrate and 
nitrite dynamics over 72 h of growth. For both strains, we found that 
inhibition increased with initial nitrite concentration (Fig. 4a). Further-
more, the nitrate reduction rate of PD Nar+ slowed gradually with 
increasing initial nitrite concentration, and the nitrate reduction rate 
for RH Nap+ showed a threshold-like dependence on nitrite concentra-
tion ([NO−

2 ] ≈ 0.4–0.5 mM).
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Fig. 3 | Individual traits do not explain the outcome of acidic enrichments. 
a, Schematic of the experimental design. PD Nar+ (blue) and RH Nap+ (orange) 
were passaged repeatedly in monoculture under denitrifying (anaerobic) 
conditions. After each 72 h growth cycle, cultures were passaged (3 times) into a 
defined medium containing 1.75 mM nitrate using a 1/8 dilution factor. Biomass 
is measured via 600 nm absorbance at the end of each cycle, and nitrate and 
nitrite concentrations are measured throughout each cycle using a Griess assay 
(Methods). b,c, End-point biomass is shown for each strain at both pH 6.0 (b) 
and pH 7.3 (c). Lines connect the average across replicates. RH Nap+ (orange) 

produces more biomass at both pH levels, while PD Nar+ (blue) appears to 
decay in abundance at pH 6.0 (despite PD Nar+ community enrichment in this 
condition; Fig. 2b). d–g, Nitrate (d and e) and nitrite (f and g) concentration 
dynamics are shown at six time points throughout each cycle in each condition. 
PD Nar+ nitrate and nitrite reduction rates slow at pH 6.0 as the growth–dilution 
cycles progress, consistent with its reduction in biomass (d and f, blue). PD Nar+ 
(blue) accumulates nitrite at each pH condition, whereas RH Nap+ (orange) 
does not (f and g). Biological replicates (n = 4) are shown for each strain in each 
experimental condition, with lines connecting the averages of these replicates.
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Next, we measured killing curves for each strain in monoculture 
at pH 6.0 with no nitrate and 0, 0.875 or 1.75 mM nitrite (Fig. 4b and 
Methods). We observed the mortality of PD Nar+ increased with the 
concentration of nitrite, while the mortality rate of RH Nap+ changed 
little. This suggests that the accumulation of nitrite by PD Nar+ in mono-
culture (Fig. 3f) causes cell death.

Finally, we performed PD Nar+ monocultures at pH 6.0 with either 
high (1.75 mM) or low (0.875 mM) concentrations of nitrate. PD Nar+ 
accumulated more nitrite in the high-nitrate condition (Fig. 4c) and 
produced one-fifth of the biomass yield per unit substrate consumed 
compared with the low-nitrate condition. We additionally inferred that 
toxicity slowed the rate of nitrite reduction using a consumer-resource 
model (Fig. 4c, Methods and Supplementary Text Section 2.2). Overall, 
these experiments showed that nitrite accumulation has a substantial 
deleterious effect on the growth and metabolic activity of PD Nar+.

Co-culture alleviates nitrite toxicity in acidic conditions
PD Nar+ grew poorly in monoculture at pH 6.0 (Fig. 3) due to toxicity 
from accumulating nitrite (Fig. 4) but still managed to dominate acidic 
enrichments (Fig. 2). We hypothesized that because RH Nap+ diminishes 
nitrite accumulation in monoculture (Figs. 3f and 4a), it does so as well 
in co-culture, alleviating toxicity and allowing PD Nar+ to dominate.

To test this hypothesis, we performed 1:1 co-cultures of PD Nar+ 
and RH Nap+ at pH 6.0, supplying 1.75 mM nitrate (Methods). These 
co-cultures accumulated substantially less nitrite relative to the mono-
culture of PD Nar+ and produced significantly more biomass (Fig. 5b). 
Transient nitrite levels did not exceed ~0.5 mM, which is at or below 
the toxicity threshold identified for RH Nap+ monocultures in earlier 
experiments (Fig. 4a). We conclude that PD Nar+ experienced substan-
tially less toxicity due to nitrite in co-culture than in monoculture.

We then investigated whether diminished nitrite toxicity in 
co-cultures explains the dominance of PD Nar+ over multiple cycles 
of growth (Fig. 2b). To do this, we co-cultured these isolates over 

four cycles of serial dilution and measured relative abundances via 
16S amplicon sequencing (Fig. 5d and Methods). To assess whether 
density-dependent effects are present, we varied initial ratios of PD 
Nar+ and RH Nap+, holding total initial biomass constant.

Indeed, we found that co-cultures approached a stable configura-
tion with PD Nar+ dominating (Fig. 5e). After the first cycle of growth, 
relative abundances of PD Nar+ decreased across most starting con-
ditions, an effect perhaps attributable to physiological adaptation 
to anaerobic conditions46. However, all conditions subsequently 
approached a state with PD Nar+ at 60–75% relative abundance by 
the fourth cycle. The amount of nitrite accumulation in these experi-
ments increased with the relative abundance of PD Nar+ (Extended Data 
Fig. 5g). Similar serial co-cultures performed at pH 7.3 showed RH Nap+ 
driving PD Nar+ to extinction after four cycles (Fig. 5f), corroborating 
our expectations from earlier experiments and analyses (Fig. 3c,e,g and 
Extended Data Fig. 4) that RH Nap+ is a better competitor for resources 
at neutral pH.

Nar+ and Nap+ phenotypes are conserved across diverse taxa
We demonstrated that the dominance of PD Nar+ under acidic condi-
tions required the presence of RH Nap+ (Figs. 3–5). Underlying the 
interactions between these isolates was the fact that the former is a 
nitrate specialist, capable of quickly consuming the primary limiting 
resource supplied to the community, while the latter is a nitrite special-
ist, which mitigates the toxic effects of accumulated nitrite. To extend 
the applicability of this observation to diverse taxa in soil microbiomes, 
we asked whether other strains with Nar+ and Nap+ genotypes show 
nitrate and nitrite specialist phenotypes, respectively.

We phenotyped seven strains isolated in our previous study31 
which span α-, β- and γ-proteobacteria and possess one or the other 
nitrate reductase (three Nar+, four Nap+). To avoid ambiguity, we 
excluded strains possessing both Nar and Nap. These reductases tend to 
appear separately in reference genomes (Supplementary Text Section 3  
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Fig. 4 | Nitrite toxicity impacts denitrification activity of isolates at low pH.  
a, PD Nar+ and RH Nap+ were grown in monoculture under anaerobic conditions 
at pH 6.0 with 1.75 mM nitrate and varying nitrite levels indicated by colours 
shown in the legend. The dynamics of nitrate and nitrite concentrations are 
shown for each strain. The growth of both strains was increasingly inhibited as 
the initial supply of nitrite ([NO−

2 ]0) increased. PD Nar+ was unable to fully reduce 
nitrate when [NO−

2 ]0 > 0.35mM (blue and green curves, top left panel) and was 
unable to fully reduce nitrite when [NO−

2 ]0 > 0mM (all except dark purple curve, 
bottom left panel). Similarly, RH Nap+ was unable to fully reduce either nitrate or 
nitrite when [NO−

2 ]0 > 0.35mM (blue and green curves, right panels). The mean 
and standard deviation of biological replicates (n = 3) are shown. b, PD Nar+ and 
RH Nap+ were again grown in anaerobic monoculture at pH 6.0 with varying 
nitrite levels; nitrate was not supplied to prevent growth (Methods). The density 
of colony-forming units was measured via plating with replicates (n = 3) for  
each condition, with points indicating means across replicates. Error bars were 
calculated by weighting across dilution levels, as described in Methods. Lines are 

log-linear fits, and the (negative) slope of the line indicates the mortality  
rate (Methods). For PD Nar+, inferred death rates were 0.008 ± 0.004 h−1, 
0.023 ± 0.004 h−1 and 0.039 ± 0.004 h−1 for [NO−

2 ]0 = 0 ∼ mM, 0.875 mM and 
1.75 mM, respectively. For RH Nap+, inferred death rates were 0.013 ± 0.004 h−1, 
−0.001 ± 0.001 h−1 and 0.007 ± 0.001 h−1 for [NO−

2 ]0 = 0 ∼ mM, 0.875 mM and 
1.75 mM, respectively. Uncertainties indicate standard deviations of log-linear  
fit parameters. c, Nitrate (top) and nitrite (bottom) metabolite dynamics for 
monocultures of PD Nar+, supplied with initial nitrate concentrations of 
0.875 mM (light blue) and 1.75 mM (dark blue). Inset in the bottom panel  
shows the change in optical density (OD) during the 72 h growth cycle 
(ΔOD = ODfinal − ODinitial); end-point biomass levels were greater in the 0.875 mM 
nitrate condition than in the 1.75 mM condition, suggesting mortality induced  
by nitrite accumulation. A consumer-resource model was fit to the low-nitrate 
condition (solid light blue lines) and used to predict high-nitrate condition 
(dashed dark blue lines). The mean and standard deviation of biological 
replicates (n = 3) of the data are shown.
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and Supplementary Fig. 1), and when they co-occur Nap may be used 
for redox balancing47 or expressed primarily in micromolar nitrate 
concentrations48,49. For each strain, we measured nitrate and nitrite 
dynamics at pH 6.0 supplied with 1.75 mM nitrate, using the area under 
the curve (AUC) of these dynamics to summarize traits (Fig. 6a). As with 
PD Nar+ and RH Nap+, we found that Nar+ genotypes showed fast nitrate 
reduction and the transient accumulation of nitrite, while Nap+ strains 
exhibited slow nitrate reduction and no nitrite accumulation (Fig. 6b). 
We conclude that Nar+ genotypes tend to accumulate nitrite via fast 
nitrate reduction and that Nap+ strains tend to avoid this accumulation.

Soil microbiomes harbour substantial taxonomic diversity, raising 
the question of whether the trait conservation we observe in Proteobac-
teria (Fig. 6) is relevant to communities in the wild. To extend the appli-
cability of our observations, we demonstrated that Proteobacteria are 
likely representative of denitrifying populations in natural soils using 
two culture-free approaches (Supplementary Text Section 4). Briefly, 
we found that (a) a substantial fraction of denitrification reductase 
reads can be classified as Proteobacterial (Supplementary Fig. 2) and 
(b) laboratory incubation experiments performed on homogenized 

topsoils under anaerobic conditions show Protobacterial populations 
dominate community response to nitrate amendment (Supplementary 
Fig. 3). Finally, a meta-analysis of culture-based studies of denitrifiers 
in soils also supports the claim that Proteobacteria dominate these 
populations (Supplementary Table 2). These findings support the 
hypothesis that the traits of our Proteobacterial isolates are representa-
tive of the dominant denitrifying populations in soils.

Discussion
We have presented a data-driven and experimentally validated approach 
to understanding how environmental conditions determine commu-
nity composition at the granular level of gene content. Beginning with 
a statistical analysis of the global topsoil microbiome, we found that 
pH is strongly correlated with the composition of the reductases in the 
denitrification pathway. We then reproduced the observed pattern 
between pH and gene content via enrichment experiments, allowing us 
to dissect community responses to pH in vitro. Experiments on isolates 
from these enrichments showed that the dominance of a nitrate special-
ist Nar+ isolate in acidic conditions depends on the presence of a nitrite 
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a,b, Monoculture PD Nar+ growth metabolite dynamics (shown previously in  
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a, Nitrate concentration. b, Nitrite concentration. Initial biomass (OD600 = 0.01) 
and nitrate (1.75 mM) were the same in each condition, but the co-culture 
(purple) showed significantly less nitrite accumulation despite only slightly 
decreased nitrate reduction rate, as well as significantly higher biomass 
production (purple bar, inset, b). Points and error bars indicate the means  
and standard deviations, respectively, across biological replicates (n = 3).  
c, Schematic of proposed interaction between PD Nar+ and RH Nap+. d, Schematic 
illustrating the multi-cycle co-culture experiment shown in e and f. Mixtures of 
PD Nar+ and RH Nap+ were prepared across a range of ratios spanning 0.03:0.97  
to 0.97:0.03 (distinguished by colour), with total biomass held constant. These 

mixtures were then transferred to fresh media buffered at pH 6.0 or pH 7.3, with 
2 mM nitrate supplied. Cultures were grown under anaerobic conditions for 72 h 
and passaged 1:8 into fresh media for a total of four growth cycles. 16S amplicon 
sequencing was used to infer PD Nar+ relative abundance at the end of each  
cycle in pH 6.0 conditions and at the end of four cycles in pH 7.3 (Methods and 
Supplementary Fig. 7). e, PD Nar+ relative abundance dynamics at pH 6.0. 
fNar+,0 = 0.03,0.5 and0.97 are highlighted by darker lines. f, PD Nar+ relative 

abundance dynamics at pH 7.3. Relative abundance values in e and f are the means 
of inferred relative abundances across biological replicates (n = 4 for PD Nar+ 
relative abundance ≥ 0.5 at pH 6 and relative abundance = 0.03 in both pH 
conditions; n = 3 for all other conditions). Error bars are calculated by adding the 
errors due to inference of amplification bias during sequencing and variance 
between biological replicates in quadrature (see Methods for details).
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specialist Nap+ isolate to alleviate pH-dependent nitrite toxicity. Finally, 
we provided evidence that Nar+ and Nap+ genotypes are generically 
associated with nitrate and nitrite specialist phenotypes, respectively, 
providing a mechanistic explanation for covariation between pH and 
gene content in the global topsoil microbiome.

A central finding of our study is that widespread patterns in 
metagenomic gene content can emerge from ecological interactions 
between members of the community and not necessarily only from 
individual adaptations to environmental conditions50. While individual 
fitness effects clearly play a role in defining patterns in many contexts, 
interactions are likely essential to explaining patterns in a variety of 
other contexts. It will be an important avenue for future work to use 
the methods developed here to generate concrete hypotheses for 
the role of individual fitness effects and interactions in forming gene 
content patterns across a variety of metabolic processes and biomes.

Despite the breadth of our study, however, there were limitations 
that led us to perform additional analyses. First, our in vitro inves-
tigations focus on just two taxa. However, soils support thousands 
of taxa, raising the question of how an interaction between two taxa 
can be relevant in the complex ecological context of soils. Our soil 
microcosm experiment provides strong evidence that the complexity  
of the nitrate-utilizing community in soils is low (Supplementary 
Fig. 3 and Supplementary Text Section 4). Specifically, a small frac-
tion of all taxa in the soil community respond to the addition of nitrate 
(0.3 ± 0.2%; Supplementary Fig. 3c). The result suggests that despite 
the ecological complexity of soils, a small number of taxa (4 ± 3 in our 
experiment; Supplementary Fig. 3c) participate significantly in this 
metabolic process in situ.

Next, we have used the enzymes Nar and Nap as markers for 
nitrate and nitrite specialists, respectively. While it is possible for these 
enzymes to co-occur, we showed via a co-evolution analysis in refer-
ence genomes that genes encoding these enzymes are anti-correlated 
(Supplementary Fig. 1), and previous work suggests that Nap may be 
used for redox balancing47 or micromolar nitrate concentrations48,49 
in strains that contain both enzymes. In addition, the nitrite reduc-
tases encoded by the genes nirS and nirK must also contribute to the 
nitrate and nitrite specialist phenotypes. In vitro studies show that 
NirK enzymes have higher activity than NirS26,51–64, and previous work 
correlates the presence of nirK with faster nitrite reduction traits across 

diverse taxa31. However, this work also shows that strains with narG 
exhibit faster nitrate reduction than strains with only napA31, a finding 
corroborated by in vitro comparisons of these enzymes65–69. We note 
that one strain considered in Fig. 6, PDM21, possesses both narG and 
nirK, unlike either of the enrichment isolates PD Nar+ (which possesses 
nirS) or RH Nap+ (which possess nirK). PDM21 showed a clear nitrate 
specialist phenotype, despite the fact that it possesses nirK. The fact 
that Nar+ strains are nitrate specialists at low pH, independently of the 
nitrite reductase they encode, may ultimately arise because the Nar 
nitrate reductase is protected from extracellular pH in the cytoplasm, 
while the periplasmic Nap and Nir reductases are not26.

Finally, a key finding of our study is that the interaction between 
Nar+ and Nap+ genotypes arises due to specialization by these two geno-
types for the first and second steps of the denitrification cascade. Previ-
ous studies have suggested that such specialization is the consequence 
of a physiological trade-off35,70. We investigated this hypothesis further 
using simulations that account for a trade-off between nitrate and 
nitrite reduction rates, as well as the toxicity of nitrite (Supplementary 
Information). The results of these simulations are consistent with the 
results of our enrichment experiments: namely, specialists are selected 
for when toxicity is high and generalists are selected when toxicity is 
low (Supplementary Figs. 4 and 5 and Supplementary Text Section 5). 
An important direction for future work will be experimentally char-
acterizing the physiological basis for phenotypic specializations in 
denitrification.

Methods
Analysis of the global topsoil microbiome
Data pre-processing. Gene abundance tables and environmental 
variables for the global topsoil microbiome dataset were provided by 
Bahram et al.4, who sampled, sequenced and analysed 189 topsoil sites 
representing the world’s terrestrial biomes. Samples were processed 
according to standardized protocols, including shotgun metagenomic 
sequencing of soil DNA extracts and chemical analysis of soil pH, P, 
K, Ca, Mg, 12C, 13C, 14N and 15N. In addition, site data including mean 
annual temperature, mean annual precipitation, potential evapotran-
spiration, net primary productivity and moisture were obtained from 
public databases. Paired metagenome reads were quality filtered and 
annotated to yield Kyoto Encyclopedia of Genes and Genomes (KEGG) 
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orthologue abundance tables. The details of all protocols and analyses 
to obtain gene abundance tables and site environmental variables are 
given in ref. 4.

In the subsequent analyses, the abundance of KEGG orthologues 
corresponding to the six reductases in the denitrification pathway 
(narG/K00370, napA/K02567, nirS/K15864, nirK/K00368, norB/
K04561, nosZ/K00376) were considered. The relative abundances of 
these KEGG orthologues were computed by dividing the number of 
reads mapped to each KEGG orthologue by the total number of reads 
in each sample. In addition, 17 site environmental variables from the 
measurements and analyses described above were considered: pH, P, 
K, Ca, Mg, C, N, δ13C, δ15N, C/N, latitude, longitude, mean annual tem-
perature, mean annual precipitation, potential evapotranspiration, 
net primary productivity and moisture.

uiSVD. uiSVD32 was applied to the denitrification reductase relative 
abundance matrix (X) to separate variation in pathway magnitude  
(that is, variations in total reductase content) from variation in path-
way composition (that is, variations in relative fractions of reductase 
content). This approach was motivated by modelling the data as

⃗x i = di ⃗c i, (1)

where ⃗x i is the ith row of X (with entries being relative abundances of 
each KEGG orthologue), di is a scalar representing pathway magnitude 
and ⃗c i is a vector representing pathway composition. In matrix form, 
this can be written as

X = DC, (2)

where D is a diagonal matrix. Expressing X in this form can be achieved 
by applying uiSVD, which decomposes X as

X = DŨ ̃S ̃VTE, (3)

where D, ̃S and E are diagonal matrices, Ũ  and ̃V  are unitary matrices, 
and T denotes the matrix transpose. Hence,

C = Ũ ̃S ̃VTE. (4)

The results of this decomposition are shown in Fig. 1d. Note that, in  
this representation, D encodes the scale of the rows of X (that is, path-
way magnitude), while E encodes the relative scales of the columns 
(that is, typical relative scales of each gene). Code used to perform 
uiSVD was adapted for Python from the MATLAB code given in ref. 32.

Having decomposed the relative abundance data X into elements 
of pathway magnitude (D) and composition (C), modes of gene covari-
ation within the composition matrix were identified via principal com-
ponents analysis. Because E encodes scaling information about the 
genes in X, ̃C ≡ CE−1 can be interpreted as a normalized gene composi-
tion matrix, for which all genes have been set to the same approximate 
scale. Therefore, principal components analysis was applied to ̃C   
by mean-centring the columns and applying singular value decomposi-
tion to the resulting matrix, yielding a decomposition USVT. The  
columns of V represent the orthonormal PCs of ̃C  (shown in Extended 
Data Fig. 1), and

T = US (5)

represents the ‘scores’ matrix, that is, the projections of ̃C  onto the  
PCs in V.

Analysing gene–environment covariation. To relate gene covaria-
tion to variation in site environmental variables, Pearson correlations 
(ρ2) were computed between the scores of each PC (equation (5)) and 

each environmental variable (squared Pearson correlations shown 
in Fig. 1e). In addition, the same analysis was performed between the 
diagonal elements of D and each environmental parameter (Fig. 1f). 
Each correlation was computed using the n = 189 observations from 
the global topsoil microbiome dataset, with environmental variables 
containing NaN (not a number) values removed when computing each 
correlation. The significance of associations between C/N ratio and D 
as well as between pH and PC2 scores was determined via a one-tailed 
randomization test. Explicitly, a distribution for the null hypothesis of 
zero correlation was empirically constructed by repeatedly (106 times) 
computing correlations between shuffled versions of the variables.

Phylogenetic classification of denitrification reductases. Raw 
reads from the global topsoil microbiome dataset (PRJEB18701) were 
trimmed of adapters and low-quality sequences using Trimmomatic 
version 0.39 with default settings. Trimmed reads were assembled 
using SPAades version 3.15.0. Predicted open reading frames on assem-
bled contigs were then annotated as KEGG orthologue groups of the 
denitrification reductases (narG/K00370, napA/K02567, nirS/K15864, 
nirK/K00368, norB/K04561, nosZ/K00376) using eggNOG-mapper 
version 2.0.8, and reads were mapped to these annotated open read-
ing frames using minimap2. Finally, reads mapping to denitrification 
KEGG orthologues were phylogenetically classified using the Kaiju  
web server (https://kaiju.binf.ku.dk/server; ref. 71). The results of these 
classifications, at the level of taxonomic phylum and grouping all 
samples together, are shown in Supplementary Fig. 2.

Enrichment and isolation of denitrifying strains
Processing of soils for primary enrichment experiments. Six forest  
and prairie soil samples were collected from Meadowbrook Park, 
Urbana, IL. Details regarding these soil samples are given in Supplemen-
tary Table 1. Soils were sampled from a depth of 1–5 cm using autoclaved 
steel laboratory spatulas and then stored in sealed plastic bags at 4 °C 
for approximately 2 months before the start of the experiment. No 
sample compositing was performed. To mechanically homogenize soils 
before enrichment, 5 g samples of each soil were added to sterile 50 ml 
centrifuge tubes, along with 25 ml PBS (pH 7.4) and 5–10 g sterile 4 mm 
glass beads. Tubes were then vortexed (Vortex-Genie 2) at high speed 
for 1 min to homogenize the samples. After vortexing, large particles 
in homogenized soil samples were allowed to settle for 20 min before 
transferring 1 ml of the supernatant to sterile microcentrifuge tubes.

Primary enrichment experiments. Wells of a sterile 96-deepwell plate 
(Axygen PDW20C) were loaded with 1.2 ml of defined media. The media 
contained succinate (25 mM) as the carbon source, and 2.0 mM sodium 
nitrate was initially supplied. Medium pH was buffered by phosphate 
(40 mM) at two conditions, pH 6.0 and pH 7.3. This medium will here-
after be referred to as succinate-defined medium (SDM); its precise 
composition is described in ref. 31, and it was developed to capture 
a diverse range of denitrifiers29. Six wells of each pH condition were 
then inoculated with 10 μl of each soil supernatant, with two wells 
of each pH condition left as no-growth controls. The plate was then 
sealed with a gas-permeable sterile membrane (Diversified Biotech 
BERM-2000). After sealing, the plate was immediately transferred 
to an anaerobic glove box (Coy Laboratory Products 7601-110/220), 
which was continuously purged by a 99%/1% N2/CO2 mixture. The plate 
was incubated at 30 °C and shaken at 950 r.p.m. (Talboys Professional 
1000MP, 3 mm orbital radius).

Cultures were grown under these conditions for 72 h. At the end of 
this time, 150 μl of the cultures was passaged under anaerobic condi-
tions into a freshly prepared plate containing 1,050 μl of fresh medium 
(1/8 dilution factor). These passaged cultures were sealed and returned 
to incubation and shaking for another 72 h growth cycle. At the end of 
each cycle, unused cultures were assayed for end-point nitrate and 
nitrite concentrations via Griess assay and vanadium (III) chloride 
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reduction method via the protocol described in ref. 31 (Supplemen-
tary Fig. 6). In addition, optical densities at 600 nm (OD600) were also 
recorded (BMG CLARIOstar) using 300 μl of end-point cultures in 
96-well optical plates (Supplementary Fig. 6).

Cultures were repeatedly passaged and assayed in this manner 
for 12 cycles. At the end points of cycles 4, 8 and 12, 100 μl samples  
of end-point cultures were cryopreserved by adding 100 μl of 50% 
glycerol and storing at −80 °C. At the end of cycle 12, cultures remaining 
after cryopreservation and nitrate/nitrite assay were frozen at −20 °C 
for subsequent DNA extraction.

Sequencing and analysis of primary enrichment experiments. 
Frozen enrichment end-point (cycle 12) cultures stored at −20 °C were 
thawed and DNA extracted using the DNeasy UltraClean Microbial Kit 
(Qiagen). DNA concentrations were quantified using the Qubit dsDNA 
BR Assay Kit (Invitrogen). Library preparation for sequencing of DNA 
extracts was performed using the Nextera DNA Prep Kit and the Nextera 
DNA CD Indexes (Illumina). Pooled libraries were then sequenced using 
a NextSeq 500/550 Mid Output Kit v2.5 (Illumina, 2 × 150 bp paired 
end), with a 1.5 pM library loading concentration and a 1% spike-in of 
PhiX Control v3 (Illumina). Sequencing was performed on a locally 
maintained and operated Illumina NextSeq 550 system.

To characterize the taxonomic composition of enrichments, 16S 
ribosomal RNA fragments (miTAGs) were extracted from the sequenc-
ing data using the miTAGs extraction script version 172, after trimming 
and merging of overlapping paired-end reads via Trim-Galore version 
0.6.773 and BBMerge version 38.2274, respectively. The resulting miTAGs 
were then taxonomically classified using the RDP (Ribosomal Database  
Project) Classifier75, using a confidence threshold of 80% and the  
copy number adjustment option enabled.

The sequencing data were then binned into MAGs using the 
metaWRAP pipeline version 1.342. In summary, the pipeline performed 
adapter and quality trimming of raw reads using Trim-Galore version 
0.6.773; assembly using metaSPAdes version 3.15.476; binning using 
CONCOCT version 1.1.077, MaxBin2 version 2.2.778 and metaBAT ver-
sion 2.1579; bin quality assessment using CheckM version 1.0.1180; and 
bin refinement by combining the results of the three binning algo-
rithms. Bin completion and contamination thresholds of 95% and 5%, 
respectively, were used to obtain high-quality MAGs in most samples 
(Supplementary Table 3). High-quality MAGs were then annotated 
using the RAST server81.

Isolation of strains from primary enrichment experiments. Strains 
representing the dominant taxa in the enrichment experiments were 
isolated from cryopreserved cycle 12 samples from soil number 1. 
Glycerol-cryopreserved cultures were streaked to purity on 1/10× TSB 
agar plates (1.5% agar w/v) in aerobic conditions. Overnight cultures of 
single-colony isolates were grown in 1/10× TSB (30 °C, 400 r.p.m.) in 
aerobic conditions and cryopreserved (50% glycerol, −80 °C). Sanger 
sequencing of the 16S rRNA gene using 27F and 806R universal primers  
was used to taxonomically classify isolates using the SILVA rRNA data-
base82–84. RH Nap+ was determined to be of the family Rhizobiaceae,  
and PD Nar+ was determined to be of the genus Pseudomonas.

Additional enrichments across a broader pH range. Additional 
enrichments using a different set of soil samples were performed 
across a broader range of pH conditions, spanning pH 5.0 to pH 7.3. 
Seven soil samples (soil numbers 7–13; Supplementary Table 1) were 
taken from prairies and forest preserves across the Midwestern United 
States (Illinois, Indiana, Michigan and Wisconsin) from a depth of 
1–5 cm using autoclaved steel laboratory spatulas and were homog-
enized and processed as described above. These soils were used to 
inoculate an enrichment experiment with four different pH-buffered 
SDM conditions: pH 5.0, pH 5.5, pH 6.0 and pH 7.3. In pH 5.0 and  
pH 5.5 conditions, succinate/succinic acid serves as the buffering 

agent because the buffering capacity of phosphate is weak in this pH 
range. Details of incubation, passaging, sampling, cryopreservation 
and sequencing and data analysis of cycle 12 cultures are as described 
above, except that defined media succinate concentration is reduced 
to 4 mM. Since nitrate is the limiting resource in these experiments, this 
change does not impact growth, but a lower succinate concentration 
reduces spontaneous protonation at low pH. The taxonomic composi-
tion and median MAG genotypes of end-point enrichment are shown 
in Extended Data Fig. 3.

Characterization of isolate phenotypes
Culturing protocol. Strains were pre-cultured in two stages under 
aerobic conditions before transfer to denitrifying (anaerobic) condi-
tions for phenotyping. First, wells of a sterile 24-well plate (Thermo 
Scientific Nunc Non-Treated Multidishes) were loaded with 1.7 ml of 
R2B medium. Wells were inoculated with isolates PD Nar+ and RH Nap+ 
from glycerol stocks stored at −80 °C. The plates were then sealed with a 
gas-permeable sterile membrane (Breathe-Easier, USA Scientific, 9126-
2100). After sealing, the culture was incubated overnight at 0.5 r.c.f. 
(relative centrifugal force) (400 r.p.m. in Fisherbrand Incubating Micro-
plate Shakers 02-217-759, 3 mm orbital radius or 219 r.p.m. in Heidolph 
Unimax 1010, 10 mm orbital radius) and 30 °C in aerobic conditions. 
These cultures reached saturation during this time. Second, wells of a 
sterile 24-well plate were loaded with 1.7 ml of SDM at pH 7.3 with 25 mM 
succinate (and no sodium nitrate). Wells were then inoculated with 17 μl 
of the saturated R2B PD Nar+ and RH Nap+. After sealing, the cultures 
were incubated at 0.5 r.c.f. and 30 °C in aerobic conditions overnight. 
These cultures reached saturation during this time. Saturated SDM 
culture densities were measured and normalized to OD600 = 1.0 via 
dilution into pH 7.4 phosphate-buffered saline (8 g l−1 H2O, 0.2 g l−1 KCl, 
2.68 g l−1 Na2HPO4·7H2O, 0.24 g l−1 KH2PO4).

Due to a lag time associated with growth in anaerobic conditions 
for facultative anaerobes85–90, an additional period of pre-culture in 
anaerobic conditions was performed before phenotyping. Wells of a 
sterile 96-deepwell plate (Axygen PDW20C) were loaded with 1.2 ml 
SDM (4 mM succinate) supplemented with 1 mM sodium nitrate, from 
stock that had been allowed to equilibrate in the anaerobic glovebox. 
SDM without nitrate was loaded into at least three wells of the plate as 
a control for growth on trace quantities of oxygen; since succinate is a 
non-fermentable carbon source, any growth in the absence of nitrate 
in this medium indicates aerobic growth. These wells were inoculated 
in the glovebox with 12 μl of optical density-normalized PD Nar+ and 
RH Nap+ aerobic pre-cultures, resulting in a starting optical density 
of 0.01. Additional wells were left blank as no-growth controls. Plates 
were sealed with a gas-permeable sterile membrane. Cultures were 
incubated at 30 °C and shaken at 950 r.p.m. (Fisherbrand Incubating 
Microplate Shakers 02-217-759 or Talboys Professional 1000MP, 3 mm 
orbital radius) for 72 h.

Anaerobic pre-cultures were then used to initiate denitrification 
phenotyping experiments. Optical densities of end-point anaerobic 
pre-cultures were measured using 300 μl of cultures in 96-well optical  
plates. Optical densities were then normalized to 0.04 via dilution 
into SDM (no nitrate). About 150 μl of this normalized end-point 
anaerobic culture was then passaged to 1,050 μl of SDM, with pH and 
nitrate/nitrite concentrations varying according to the experiment (for 
example, Fig. 4). In the case of co-culture phenotyping experiments, 
this 150 μl inoculum contained a 1:1 ratio of PD Nar+ and RH Nap+, as 
measured by optical density. Inoculated plates were then incubated 
at 30 °C and shaken at 950 r.p.m. in anaerobic conditions. Nitrate and 
nitrite concentrations were assayed over time via manual sampling 
and subsequent Griess assay and vanadium (III) chloride reduction via 
the protocol described in ref. 31. End-point biomass was measured via 
OD600 using 300 μl samples.

Additional experiments were conducted where measurements 
were taken over multiple cycles of growth and dilution into fresh 
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medium (for example, Figs. 3 and 5). For these experiments, aerobic 
pre-cultures were used to directly inoculate the first cycle of anaerobic 
growth. Nitrate and nitrite measurements were taken beginning in the 
first cycle of growth, and normalization of optical density after the first 
cycle was omitted. For the first cycle, 1.2 ml of SDM (4 mM succinate, 
2 mM nitrate) was loaded into a 96-deepwell plate as described above. 
About 12 μl of normalized culture from the end point of the aerobic 
pre-culture protocol was used to inoculate the wells of this plate. For the 
experiment shown in Fig. 5, the fractions of PD Nar+ and RH Nap+ were 
chosen to achieve specified relative abundances by optical density. 
Two no-growth controls that contain either no inoculum (to control for 
contamination) or no nitrate or nitrate (to control for aerobic growth) 
were included on each plate.

At the end of each growth experiment or cycle, cultures  
were removed from anaerobic conditions, sealed with Microseal ‘B’ 
Seals (BIO-RAD, MSB1001) and stored at −80 °C for subsequent DNA 
extraction.

Quantification of relative abundance dynamics in co-culture. Rela-
tive abundances were quantified in co-culture experiments using 
16S amplicon sequencing. Frozen end-point co-culture enrichments 
stored at −80°C were thawed and DNA extracted using the DNeasy 96 
Blood & Tissue Kit (Qiagen). DNA concentrations were quantified using 
the Qubit dsDNA BR Assay Kit (Invitrogen). Next, the 16S v4 region of  
the rRNA gene was amplified with 515F and 806R primers using the 
Illumina 16S sequencing protocol91. Briefly, a fragment of the 16S rRNA 
gene was amplified using the 515F (GTGYCAGCMGCCGCGGTAA) and 
806R (GGACTACNVGGGTWTCTAAT) universal primers. The following 
reagents were used for each reaction: 14.5 μl nuclease-free H2O, 1 μl 
515F primer (5 μM), 1 μl 806R primer (5 μM), 10.5 μl DNA extract and 
12.5 μl Platinum Hot Start PCR Master Mix (Invitrogen). The following 
thermocycler settings were used: initial denaturation, 3 min at 95 °C; 
amplification (25 cycles), 30 s at 95 °C, 30 s at 55 °C, 30 s at 72 °C; final 
extension, 5 min at 72 °C. PCR products were cleaned using the PCR-
CLEAN DX Kit (Aline). 16S amplicons were barcoded for multiplexed 
Illumina sequencing using the Nextera XT Index kit (Illumina) following 
the Illumina protocol91. Pooled amplicon libraries were then submitted 
to the University of Chicago Genomics Facility for sequencing using a 
15–20% spike-in of PhiX Control.

Resulting paired-end reads were merged with Pear92 and then 
quality filtered with DADA2 plugin in the QIIME2 pipeline with default 
parameters93. Taxonomy of amplicon sequence variants (ASVs) was 
assigned by q2-feature-classifier prefitted to the SILVA database using 
the naive Bayes algorithm for the V4 region of 16S rRNA94. ASVs of the 
family Rhizobiaceae were classified as RH Nap+, whereas ASVs of the 
genus Pseudomonas were classified as PD Nar+. Virtually no contami-
nation (defined as ASVs classified as neither RH Nap+ nor PD Nar+) was 
observed (<0.2% total counts, <0.8% counts per condition).

Systematic measurement bias complicates the interpretation 
of 16S amplicon data as a reflection of biomass relative abundance95. 
Therefore, we sought to infer the relative abundances by biomass using 
a standard curve to infer conversion factors between ASV counts and 
biomass for each strain. Following ref. 95, we assumed the biomass x* 
of each strain is proportional to the ASV counts C*, with bias factors b*:

xPD = bPDCPD
xRH = bRHCRH

(6)

The relative abundance then becomes

fPD =
CPD

CPD + brCRH
. (7)

where br is the ratio of the bias factors br = bRH/bPD. Using measured 
counts for cultures with known PD Nar+ relative abundances, we fit 

br using the Levenberg–Marquardt algorithm (Supplementary Fig. 7) 
and obtained a bias ratio of 4.3 ± 0.7. Equation (7) was then used to 
infer biomass relative abundances from ASV counts. Error in inferred 
relative abundance comes from (a) error in the inference of br and (b) 
variance between replicates. To account for (a), error in br was inferred 
from the covariance of the fit, and corresponding uncertainty in relative 
abundance was calculated using the variance formula96. To account 
for (b), standard deviation of relative abundance between biological 
replicates was calculated. The sum of errors (a) and (b) was added in 
quadrature to compute the total error.

Measurement of mortality rates via plating. To measure and compare 
the effect of nitrite on mortality at pH 6.0 and pH 7.3, PD Nar+ and RH 
Nap+ were subjected to varying nitrite concentrations, and the number 
of viable cells over time was measured. This allowed us to infer a mortal-
ity rate as a function of pH and nitrite concentration.

First, plating media were selected to identify PD Nar+ and RH Nap+ 
separately. Preliminary experiments indicated that PD Nar+ colonies 
were most clearly visible and well defined on 1/10× TSB, 1.5% agar plates 
(1.5 g l−1 tryptone, 0.5 g l−1 soytone, 0.5 g l−1 sodium chloride, 15 g l−1 
Bacto agar) and that RH Nap+ colonies were most distinguishable  
on a defined medium with mannitol as the carbon source. Mannitol- 
defined medium was made using the same protocol as SDM, but 
160 mM mannitol was substituted for succinate, and 1.5% w/v  
agar was added.

Strains were then prepared for mortality experiments by precultur-
ing as in phenotyping experiments (that is, two stages of aerobic growth 
and one stage of anaerobic growth). After the anaerobic pre-culture 
step, 150 μl of culture of each strain normalized to OD600 = 0.04 was pas-
saged under anaerobic conditions to 1,050 μl of SDM (4 mM succinate, 
no nitrate) and incubated at 30 °C and 950 r.p.m. Two pH conditions 
(pH 6 and pH 7.3) and four initial nitrite conditions (0, 0.438, 0.875 and 
1.75 mM) were tested.

Mortality rates were measured via time course of viable cell counts 
in each culture. About 10 μl samples were taken from each condition 
at each time point. These samples were then serially tenfold diluted to 
achieve suspensions containing less than approximately 100 cells; the 
number of dilutions necessary for each strain in each condition were 
determined by preliminary experiments. About 10 μl of diluted samples 
were then pipetted onto solid medium and streaked by tipping the plate 
at a roughly 45° angle until droplets approached the opposite edge of 
the plate. We eschewed mechanical streaking to avoid measurement 
bias. Plates were then covered and incubated at 30 °C. Colonies in 
each streak were counted manually when distinct but not overgrown 
(approximately 1 day for PD Nar+ on 1/10× TSB and 2 days for RH Nap+ 
on mannitol-defined medium).

We mathematically combined cell density inferences from mul-
tiple streaks to reduce measurement error. Cell density inferred from 
each streak at dilution level Di can be written as

ni = DiCi, (8)

where ni is estimated cell density and Ci is the number viable cells 
counted. To combine counts across dilution levels, weighted averages 
were used97:

nc =
∑i ̄niwi
∑iwi

(9)

where wi = 1/σ2i  are the weights and ̄ni and σi are the average and standard 
deviation of the counts across biological replicates at dilution level i. 
The error on the combined counts is then given by

σc =
1

√∑iwi

. (10)
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In the presence of growth, it is not possible to accurately measure 
mortality rate via plating. At pH 7.3, growth was observed for all sup-
plied nitrite values I0 > 0, so these conditions were discarded from 
analysis. At pH 6.0, growth was observed at I0 = 0.5 mM (monotonic 
decrease in nitrite concentration; Supplementary Fig. 8), so this con-
dition was also discarded from further analysis. For the conditions 
showing no growth, mortality rate was inferred using a log-linear fit. 
By assuming the mortality rate is proportional to the number of cells, 
the number of viable cells can be expressed as follows:

nc = nc,0 exp(−rdt) (11)

where rd is the death rate, and nc,0 is the number of viable cells at  
t = 0. Thus,

ln(nc) = ln(nc,0) − rdt, (12)

which is linear with respect to time. We, therefore, performed least- 
squares fits of ln(nc,0) − rdt  to the logarithm of the measured number 
of viable counts and obtained ln(nc,0) and rd as fit parameters.

Topsoil incubation experiments
Soil collection. To identify the taxa responsible for denitrification 
activity in natural soils using culture-free methods, topsoils were sam-
pled across a range of pH values (pH 5.0–7.1) from the Cook Agronomy  
Farm (CAF) in September 2022 (Supplementary Table 4). The  
CAF (46.78° N, 117.09° W, 800 m above sea level) is a long-term agri-
cultural research site located near Pullman, WA, USA. CAF was estab-
lished in 1998 as part of the Long-Term Agroecosystem Research (LTAR) 
network supported by the United States Department of Agriculture. 
Before being converted to an agricultural field, the site was zonal  
xeric grassland or steppe. CAF operates on a continuous dryland- 
crop rotation system comprising winter wheat and spring crops.  
CAF is located in the high rainfall zone of the Pacific northwest region, and 
the soil type is classified as Mollisol (Naff, Thatuna and Palouse Series)98.

Ten topsoils were collected from the eastern region of the CAF 
at a depth of 10–20 cm. Samples were collected within a diameter of 
500 m to minimize the variation of edaphic factors other than pH. The 
large variation of soil pH comes from the long-term use of ammoniacal 
fertilizers and associated N transformations, combined with field-scale 
hydrologic processes that occur under continuous no-tillage super-
imposed over a landscape that has experienced long-term soil ero-
sion. The pH measurements were made using a glass electrode in a 1:5 
(soil to water) suspension of soil in Milli-Q filtered water. The ten soils  
had similar edaphic properties: 6–8% gravimetric water content (g g−1), 
soil texture of silty clay or silty clay loam with 36–41% clay, and C:N  
ratio constant at an approximate value of 12 with 1.1–1.8% total carbon 
(wt/wt) (Supplementary Table 4).

Soil processing and incubation. To process soils for incubation, sam-
ples were sieved (<2 mm) to remove apparent plant roots and stones, 
and water content was measured (via drying at 105 °C for 24 h). To 
mimic autumn rainfall in the CAF area and stabilize microbial activity 
before beginning incubation, we rewetted the soil with sterile Milli-Q 
water at 40% water holding capacity for 2 weeks at room temperature. 
Soil slurries were then made by adding sterilized water to soil (2:1 w/w 
ratio of water to soil), which is close to natural state of soil saturated 
with water. Three replicates of each soil sample were then mixed with a 
concentrated sodium nitrate solution (nitrate+ conditions) to yield an 
approximate 2 mM final concentration and another three with sterile 
water (controls). These slurries were then transferred to 48-deepwell 
plates for incubation under anaerobic conditions (950 r.p.m., 30 °C) 
for approximately 96 h. Soil extracts were then prepared using a 2 M 
KCl solution, followed by 0.22 μm filtering to remove soil particles that 
may interfere with colorimetric assays. Colorimetric assays to measure 

the amount of nitrate consumed were carried out using a plate reader as 
described in earlier experiments. Post-incubation, end-point samples 
were stored at −80 °C for subsequent DNA extraction and sequencing.

Sequencing and analysis of topsoil incubations. Genomic DNA was 
extracted from 400 μl incubation end-point subsamples in a com-
bined chemical and mechanical procedure using the PowerSoil DNeasy  
PowerSoil HTP 96 Kit (Qiagen). Extraction was performed following 
the manufacturer’s protocol, and extracted DNA was stored at −20 °C. 
To estimate the absolute abundance of bacterial 16S rRNA amplicons, 
known quantities of gDNA belonging to Escherichia coli B and Parabac-
teroides sp. TM425 (sample obtained from Duchossois Family Institute 
Commensal Isolate Library) were added to the slurry subsamples 
before the DNA extraction step. DNA Library preparation was per-
formed using the 16S Metagenomic Sequencing Library Preparation 
protocol with a two-stage PCR workflow (Illumina). The V3–V4 region 
was amplified using forward primer 341-b-S-17 (CCTACGGGNGGCW-
GCAG) and reverse primer 785-a-A-21 (GACTACHVGGGTATCTAATCC)99. 
We confirmed using gel electrophoresis that the negative samples 
containing all reagents did not show visible bands after PCR ampli-
fication. Sequences were obtained on the Illumina MiSeq platform 
in a 2 × 300 bp paired-end run using the MiSeq Reagent Kit v3 (Illu-
mina). A standardized 10-strain gDNA mixture (MSA-1000, ATCC) was 
sequenced as well to serve as a positive control.

Raw Illumina sequencing reads were stripped of primers, trun-
cated at Phred quality score 2, trimmed to length 263 for forward 
reads and 189 for reverse reads (ensuring a 25-nucleotide overlap 
for most reads) and filtered to a maximum expected error of 4 based  
on Phred scores; this preprocessing was performed with USEARCH 
version 11.0100. The filtered reads were then processed with DADA2  
version 1.26 following the developers’ recommended pipeline93. Briefly, 
forward and reverse reads were denoised separately, then merged 
and filtered for chimeras. For greater sensitivity, ASV inference was 
performed using the DADA2 pseudo-pooling mode, pooling samples 
by soil. After processing, the sequencing depth of denoised samples 
was 104–105 reads per sample. Low-abundance ASVs were dropped, 
retaining 4,466 ASVs for further analysis. (The samples used in this work 
were collected as part of a larger study; the exact abundance-filtering 
criterion was to retain ASVs with cumulative abundance of at least 1,000 
counts across the 902 samples of this larger dataset.) Taxonomy was 
assigned by DADA2 using the SILVA database version 138.1, typically 
at genus level, but with species-level attribution recorded in cases of 
a 100% sequence match.

As an internal control, we verified that the ASVs corresponding 
to the two spiked-in genera Escherichia–Shigella and Parabacteroides 
were highly correlated with each other as expected (Pearson correla-
tion ρ = 0.94). These ASVs were removed from the table and combined 
into a single reference vector of ‘spike-in counts’. The spike-in counts 
constituted 5.5 ± 2.5% of total reads in each sample.

For subsequent analysis, the raw ASV counts were augmented by 
a pseudocount of 0.5 and divided by the per-sample spike-in counts, 
yielding values that can be interpreted as the absolute biomass of each 
taxon (up to a factor corresponding to the copy number of the 16S 
operon), measured in units where 1 means as many 16S fragments as 
the number of DNA molecules in the spike-in.

Identifying ASVs enriched on nitrate in topsoil incubations. To 
identify the ASVs enriched in nitrate treatments versus the no-nitrate 
controls, it was necessary to determine what change in recorded abun-
dance constitutes a significant change, relative to what might be 
expected for purely stochastic reasons. The relevant null model would 
combine sampling and sequencing noise with the stochasticity of 
ecological dynamics over a 4 day incubation and cannot be derived 
from first principles. However, since all measurements were performed 
in triplicate with independent incubations, the relevant null model can 
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be determined empirically. The deviations of replicate–replicate com-
parisons from a 1:1 line were well described by an effective model com-
bining two independent contributions, a Gaussian noise of fractional 
magnitude cfrac and a constant Gaussian noise of magnitude c0 reads, 
such that repeated measurements (over biological replicates) of  
an ASV with mean abundance n counts are approximately Gaussian 

distributed with a standard deviation of σ(c0, cfrac) = √(cfracn)
2 + c20   

counts (Supplementary Fig. 9). In this expression, cfrac was estimated 
from moderate-abundance ASVs (>50 counts) for which the other noise 
term is negligible; c0 was then determined as the value for which 67% 
of replicate–replicate comparisons are within ±σ(c0, cfrac) of each other, 
as expected for 1-sigma deviations. This noise model was inferred 
separately for each soil, as the corresponding samples were processed 
independently in different sequencing runs; the parameters across 10 
soils were cfrac = 0.22 ± 0.03 and c0 = 11 ± 3 counts. The model was used 
to compute the z-scores for the enrichments of absolute ASV abun-
dances in nitrate treatments against no-nitrate controls (three independ-
ent z-scores, from triplicate treatments). Significantly enriched ASVs 
were identified in each sample as those with z-scores greater than 
z = Φ−1(1 − α/2/nASV), where Φ−1(x) is the inverse cumulative distribution 
function of the standard normal distribution, α = 0.01, and nASV is the 
number of nonzero ASVs in a given sample. This critical z-score 
(z = 4.51 ± 0.04) corresponds to a two-tailed Bonferroni-corrected 
hypothesis test at significance level α under the null hypothesis that 
counts in the nitrate+ and control conditions are drawn from the same 
distribution. These analyses were performed using custom MATLAB 
scripts (Mathworks), which are available on the Open Science Framework 
data repository for the present manuscript; for additional technical 
details, the reader is referred to the detailed comments in these scripts.

To determine which significantly enriched ASVs are likely to repre-
sent denitrifiers, PICRUSt2 version 2.5.2101 was used to assign putative 
genotypes. PICRUSt2 matches input 16S rRNA sequences to genotypes 
using a curated reference genome database. A list of inferred KEGG 
orthologues for each ASV was computed using the default param-
eters of the PICRUSt2 pipeline. An ASV was classified as a denitrifier if 
KEGG orthologues for any denitrification reductase (narG/K00370, 
napA/K02567, nirS/K15864, nirK/K00368, norB/K04561, nosZ/K00376) 
were inferred and if the dissimilatory nitrate reduction to ammonium 
(DNRA) nitrite reductase nrfA/K03385 was not inferred. ASVs were clas-
sified as performing DNRA if nrfA/K03385 was inferred and as neither 
performing denitrification nor DNRA otherwise.

Statistics and reproducibility. No data were excluded from the 
analyses.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data associated with this manuscript are publicly available at https://
doi.org/10.17605/OSF.IO/N4J6F and by request. Raw sequence reads 
for soil enrichment experiments are deposited under National 
Center for Biotechnology Information BioProject ID PRJNA976277, 
and raw sequence reads for co-culture experiments are deposited 
under National Center for Biotechnology Information BioProject 
ID PRJNA1109838. Bacterial isolates are available by request. Gene 
abundance tables and environmental variables for the global topsoil 
microbiome dataset were provided by Bahram et al.4. The SILVA rRNA 
database (refs. 82–84; https://www.arb-silva.de) was used for taxo-
nomic classification.

Code availability
Code associated with this manuscript is publicly available at  
https://doi.org/10.17605/OSF.IO/N4J6F and by request.
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Extended Data Fig. 1 | Principal components resulting from the uiSVD decomposition of the global topsoil microbiome. Bars show the loadings of each gene in 
the six principal components (PCs) resulting from the uiSVD decomposition of denitrification reductase (narG, napA, nirS, nirK, norB, nosZ) relative abundances from 
the global topsoil microbiome.
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Extended Data Fig. 2 | C/N ratio correlates negatively with denitrification 
pathway magnitude. Unit-invariant singular value decomposition (uiSVD) was 
used to decompose denitrification reductase (narG, napA, nirS, nirK, norB, nosZ) 
relative abundances from the global topsoil microbiome into contributions 

due to pathway magnitude and composition (Fig. 1a–d). Pathway magnitude 
(d) most strongly correlated with C/N ratio (ρ = − 0.59, p < 10−6 via one-tailed 
randomization test; Fig. 1f).
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Extended Data Fig. 3 | Enrichment across a broader range of pH values. 
Additional enrichments were performed at pH 5.0, 5.5, 6.0, and 7.3 and the 
endpoint cultures were shotgun sequenced to infer taxonomic composition and 
genotypes. (A) Endpoint community compositions of the enrichments inferred 
via 16S miTAGs are shown. Taxa with Nar+ genotypes are indicated in shades 

of blue, while taxa that possess Nap and not Nar are indicated in shades of red. 
Compositions are shown at the level of taxonomic order, and taxa present at a 
level of less than 1% are omitted. (B) Median denitrification reductase genotypes 
inferred via annotation of metagenome assembled genomes are shown.
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Extended Data Fig. 4 | pH 7.3 monoculture data are explained by individual 
fitness effects. (A)-(H) Consumer resource model (Supplementary Information 
Eq. S1) fit to monoculture metabolite data at pH 7.3. Dots indicate nitrate 
concentrations, stars indicate nitrite concentrations, solid lines show fits 
to nitrate dynamics, and dash-dot lines show fits to nitrite dynamics. All 
concentrations are averaged over biological replicates (n = 3). Panels (A, C, E, 
G) are fits to PD Nar+ data, while panels (B, D, F, H) are fits to RH Nap+ data. To 
infer nitrate and nitrite reduction rates independently fits were performed 

for a number of different initial conditions ([NO−3], [NO−2]). Panels (A) and (B) 
correspond to (1.75, 0), (C) and (D) to (0.875, 0), (E) and (F) to (0.4375, 1.3125), 
(G) and (H) to (0.875, 0.4375). All concentrations are reported in units of mM. (I) 
Co-culture relative abundance prediction based on monoculture phenotypes. RH 
Nap+ is predicted to approach a relative abundance of 1 for all initial conditions 
at pH 7.3. This is consistent with what was observed in enrichment experiments 
(Fig. 5f).
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Extended Data Fig. 5 | Co-culture enrichment biomass and metabolite 
dynamics. Details of the PD Nar+ and RH Nap+ co-culture experiment shown  
in Fig. 5. (A) PD Nar+ relative abundance dynamics at pH 6.0 are shown. 
f0,Nar+ = 0,0.03,0.5,0.97 and 1 are highlighted. Due to small levels of 

cross-contamination between pure and mixed cultures, fNar+ increases from 0 
and decreases from 1. Although this was unintentional, it indicates that each of 
these strains is invasible by the other in this condition, providing more evidence 
that they coexist. (B) PD Nar+ relative abundance dynamics at pH 7.3 are shown. In 
panels A and B, data points are means of biological replicates (n = 4 for PD Nar+ 
relative abundance > = 0.5 at pH 6 and relative abundance < = 0.03 and = 1 in both 
pH conditions; n = 3 for all other conditions) of inferred relative abundances 
(Methods) and errorbars are calculated as described in the Fig. 5 caption and 

Methods. (C) Endpoint biomass dynamics, measured via absorbance at 600 nm, 
are shown for each cycle at pH 6.0. The f0,Nar+ = 0 condition produces much less 
biomass than the other conditions, as expected. (D) Endpoint biomass dynamics 
are shown for each cycle at pH 7.3. (E, G) NO−3 and NO−2 dynamics are measured 
using a Griess assay (117) and shown at pH 6.0. Aside from the f0,Nar+ = 0 
condition, for which biomass is very low (panel C), increasing fNar+ (panel A) 
corresponds to increasing nitrite accumulation. (F, H) Metabolite dynamics are 
shown at pH 7.3. Decreasing fNar+ (B) corresponds to decreasing nitrite 
accumulation. Points and error bars in panels C-H show means and standard 
deviations over biological replicates (n = 4 for PD Nar+ relative abundance > = 0.5 
at pH 6 and relative abundance < = 0.03 and = 1 in both pH conditions; n = 3 for all 
other conditions) in each condition.
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